...Welcome to Human Physiology – what makes us tick!

BI 121 Lecture 1

- I. <u>Announcements</u>: Please check & sign attendance roster.
 Not on list? See Pat during break/>class. Lab 1 Histology
 Thursday, 10 am 5 pm sections in 130 HUE. Much fun!!
- II. <u>Introduction</u>: Staff, office hr, required sources, course overview, grading, expectations & success. Q?
- III. Human Physiology LS ch 1, DC Module 1,
 - A. What? cf: Anatomy LS p 1
 - B. Where?Body Levels of Organization LS pp1-6, DC pp1-5
 - C. How? Different Study Approaches LS p 1
- D. Why? Security+Decision-Making Power LS p xxi, DC p v

IV. Homeostasis LS ch 1, DC Module 1

- A. What? Maintenance of ECF LS p 8
- B. Where? ECF = Plasma + Interstitium LS fig 1-4 p 8
- C. How? Simplified Homeostatic Model cf: LS fig 1-7 p 14 Balances LS p 9, DC pp 5-6
- D. Why? Cell survival! LS fig 1-5 p 9, DC p 5

ANATOMY
STRUCTURE
WHAT?
WHERE?

vs PHYSIOLOGY

vs FUNCTION

vs HOW?

vs WHY?

VS

High-Tibial Osteotomy (HTO) to Realign the Joint

Body Levels of Organization

Nerve conducts

Connective connects!!

Muscle contracts

Epithelial covers

Epithelial tissue gives rise to glands: (a) exocrine & (b) endocrine

Organs are made up ≥ 2 tissue types

Which body systems?

Maintenance of a relative constancy in the Internal environment = ECF = fluid outside of cells

Claude Bernard

100 trillion cells working intimately

Walter B. Cannon

Where is extracellular fluid?

Thanks for signing attendance roster & noting late arrival or early departure time!

BI 121 Lecture 2

- I. <u>Announcements</u> Lab 1 Histology today! 130 HUE. Fun! Readings: DC, LS, LM? <u>NB</u>: UO Biology blog vs. Canvas <u>http://blogs.uoregon.edu/bi121/fall-2016/</u>
- II. Homeostasis LS ch 1, DC Module 1
 - A. What? Maintenance of ECF LS p 8
 - B. Where? ECF = Plasma + Interstitium + ? LS fig 1-4 p 8
 - C. Homeostatic Balances? LS p 9, DC pp 5-6
 - D. Why? Cell survival! LS fig 1-5 p 9, DC p 5
 - E. *Physiology in the News* H₂O? Are we like watermelons?
 - F. <u>How</u> are balances maintained? Simplified Homeostatic Model *cf:* LS fig 1-7 p 14; T°C + BP balance *e.g.* + *vs.* FB
- III. Cell Anatomy, Physiology & Compartmentalization LS ch 2
 - A. How big? What boundaries? Why compartments? pp 19-21
 - B. Basic survival skills LS ch 1 p 3
 - C. Organelles ≡ Intracellular specialty shops Endoplasmic Reticulum (ER), Golgi, Lysosomes, Peroxisomes & Mitochondria, LS fig 2-1, 2-2, 2-3 pp 20-3

Where is extracellular fluid?

As long as <u>between/outside</u> cells, ECF everywhere?

Plasma (within CV System)

ECF = Extracellular

ICF = Intracellular

Interstitium

(eg, between muscle cells)

https://www.youtube.com/watch?v=B658Yn3INYc

Metabolic

CATA-ANA-

Dr. Evonuk's 6 Balances

 O_2/CO_2

Drink about 1 L per 1000 calories energy expenditure!!

Human ~ 2/3 H₂O ~ 60 – 70 %

NB: So 2000 kcal → drink 2000 mL ≡ 67.63 fl oz ≡ ~ 8 cups!

 $= \sim 40 - 48 \text{ kg H}_2\text{O}$

NB: Though most often negative feedback, there are exceptions:

Selected +FB eg:

LH Surge + Ovulation
Oxytocin + Uterine Contraction
Blood Clotting Cascade
cAMP Cascade
Na+ influx during AP

Blood Pressure Homeostasis

- BI 121 Lecture 3 ...Anatomy & Physiology Lab Thurs! Fun again!
- I. Announcements Registered? AEC Notes? Come to office hr!
- II. Connections Videos + Q about Homeostatic Model for BP III. Cell Anatomy, Physiology & Compartmentalization LS ch 2
 - A. How big? What boundaries? Why compartments?pp19-21
 - B. Basic survival skills ch 1 p 3
 - C. Organelles ≡ Intracellular specialty shops w/membranes
 1. Endoplasmic Reticulum (ER) 2. Golgi 3. Lysosomes
 4. Peroxisomes & 5. Mitochondria. LS 2012 pp 20-34
 - fig 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8 pp 20-7 tab 2-1 p 36
 - D. What about vaults? LS 2006, p 32
 - E. **Physiol News** Moms eggs execute Dad's mitochondria?
- IV. <u>Anaerobic vs Aerobic Metabolism Overview</u> Many sources! Mathews & Fox 1976...LS 2012 pp 26-33, fig 2-15 p 33
- V. Introduction to Genetics LS 2012 ch 2 p 20-1 + Appendix C
 - A. What's a gene? Where? p A-18, fig C-2, C-3
 - B. Why are genes important? p A-18
 - C. What's DNA & what does it look like? pp A-18 thru A-20
 - D. How does information flow in the cell? fig C-6
 - E. How does DNA differ from RNA? pp A-20 thru A-22
 - F. Genetic code? pp A-22, A-23
 - G. How are proteins made? fig C-7, C-9

How Big? 100 Cells Lengthwise = 1 mm!!

http://opb.pbslearningmedia.org/resource/tdc02.sci.life.cell.nucleus/nucleus-cytoplasm-membrane/

Why Compartments? Advantage?

<u>Incompatible</u> reactions can take place

Simultaneously!!

1 Sample Cartoon of 100 Trillion (100 x 10¹²) Cells!

http://opb.pbslearningmedia.org/resource/tdc02.sci.life.cell.organelles/organelles-in-the-cytoplasm/

(Rough & Smooth Endoplasmic Reticulum (ER): Protein & Lipid Synthesizing Factories 2. stores calcium in muscles Rough ER Rough ER lumen Smooth ER lumen Ribosomes **Tubulés** Sacs fig 2-2 LS 2012

Proteins (colored strands) Instructions for building are assembled proteins leave the nucleus on ribosomes and enter the cytoplasm. attached to the ER or free in the cytoplasm. **Nucleus** Ribosomes Rough 0000 Smooth ER **Transport** vesicles Golgi complex Secretory vesiclesvsosome Secretion (exocytosis)

Secretion of Proteins Produced by ER

Exocytosis: Primary Means of Secretion

fig 2-6 LS 2012

Phagocytosis: Cell Eating!

Catalase Enzyme Reaction in Peroxisomes Neutralize Toxin at Production Site!

$$Catalase \\ 2H_2O_2 \longrightarrow 2H_2O + O_2$$

Mitochondria: Energy Organelles

fig 2-8 LS 2012

BI 121 Lecture 4

Structure-function = fun!

- I. <u>Announcements</u> Anatomy & Physiology Lab today! Be sure to complete p 3-7 dietary record in LM < lab next wk! Help with estimating serving sizes for Nutrition Lab 3. Q?
- II. Cell Organelle Connections Little organs or specialty shops! III. Physiology News ♀ vs ♂ Mitochondria; Vaults? Sci News
- IV. Anaerobic vs Aerobic Metabolism Connections

LS ch 2 pp 26-33

- A. Take-home points + key differences fig 2-15 + vpl
- B. Few details: Glycolysis, CAC, ETC fig 2-9, 2-10, 2-11, 2-12
- V. Introduction to Genetics LS pp 20-1 + Appendix C
 - A. What's a gene? Where? p A-18, fig C-2, C-3
 - B. Why are genes important? p A-18
 - C. What's DNA & what does it look like? pp A-18 thru A-20
 - D. How does information flow in the cell? fig C-6
 - E. How does DNA differ from RNA? pp A-20 thru A-22
 - F. Genetic code? pp A-22, A-23
 - G. How are proteins made? Class skit! fig C-7, C-9

Deck of Cards

≡ 1/4 **c**

Inside a fertilized egg, with its two sets of chromosomes (blue), the protein ubiquitin (red) tags sperm mitochondria (yellow).

SOURCE: Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. *Nature* 1999;402(6760), 371-2.

The Weekly Newsmagazine of Science July 27, 1996 Vol. 150, No. 4 Pages 49-64 An organelle? **Vaults Hold Cell Mystery**

ANAEROBIC

= CYTOSOL

without O_2

- 1. Immediate/ATP-PC
 - 2. Glycolysis

Cleave One High Energy Phosphate Bond To Do Work!!

7 – 10 KiloCalories/KCal

- Synthesis of Macromolecules
- Membrane Transport
- Mechanical Work

Make big things from little things!

Move things! Move things! Microscopic! ← → Macroscopic!

Anaerobic vs. Aerobic Metabolism

Aerobic Metabolism
+mitochondrial processing of
glucose with O₂. Net of 32 ATP
per molecule of glucose

Stages of Cellular Metabolism/Respiration

Anaerobic Glycolysis Cytosol Glycolysis
Glucose and other fuel molecules

Pyruvate

Pyruvate

Aerobic Metabolism Mitochondria

Matrix

Inner Membrane

Cashing in electrons at the Electron Transport Chain (ETC) produces an abundance of ATP energy molecules!

Goals of Aerobic Metabolism

BI 121 Lecture 5

- I. <u>Announcements</u> Nutrition Analyses this Thursday! Please record diet on p 3-7 LM & begin analysis using <u>https://www.supertracker.usda.gov/</u> Bring flash drive? Q?
- II. <u>Metabolism Connections</u> Mitochondrial metabolism +
- **III.** Introduction to Genetics LS 2012 ch 2 p 20-1 + Appendix C
 - A. How does DNA differ from RNA? pp A-20 thru A-22
 - B. Genetic code? pp A-22, A-23
 - C. How & where are proteins made? fig C-7, C-9
 - D. Class skit: Making proteins @ ribosomes!
- IV. Nutrition Primer Sizer & Whitney (S&W) Sci Lib
 - A. Essential Nutrients: H₂O, 1º Carbohydrates, 2º Fats, 3º Proteins, Vitamins, Minerals; Macro- vs Micro-?
 - B. Dietary Guidelines: USDA, AICR, Eat Like the Rainbow!
 - C. Diet or exercise? Diet composition & endurance?Fasting? Zuti & Golding 1976; Sacks <u>AHA NPAM Council</u> 2009; AMDR? Adjusted Macronutrient Distribution Range!
 - D. Beware of Nutrition Quackery S. Kleiner & Monaco 1990!
- V. <u>Nutrition in the News</u> Gain weight by drinking calories? VI. <u>Introduction to Digestion</u> Steps + hydrolysis

What are DNA's major functions? Heredity + Day-to-Day Cell Function

What does DNA look like? Double-helix!!

Gene = Stretch of DNA that codes for a protein

What does DNA do, day-to-day?

cf: LS fig C-6

DNA vs RNA?

- 1. Double-stranded
- 2. Deoxyribose (without oxygen)
- 3. A, <u>T</u>, C, G <u>T</u>hymine
- 4. Self-replicative (can copy itself)
- 5. Nucleus (+mitochondria)

- 1. Single-stranded
- 2. Ribose (with oxygen)
- 3. A, <u>U</u>, C, G <u>U</u>racil
- 4. Needs DNA as template
- 5. 1º Cytoplasm (but Nucleus origin)
- 6. mRNA, rRNA, tRNA

Triplets of bases code for amino acids, the building blocks of proteins

<u>DNA</u> <u>mRNA</u> <u>tRNA</u>

code word codon anti-codon

TAT AUA UAU

ACG UGC ACG

TTT AAA UUU

TAC AUG UAC

Translation? Ribosomes Make Proteins

A Polyribosome. Which Way is Synthesis?

Nutrition Lab 3 today! More personal data...

BI 121 Lecture 6

- I. <u>Announcements</u> Data + Flashdrive for today's lab! Q? If you want notebook to study for Exam I on Oct 25th, turn in prior lecture next Tuesday, Oct 18th. Sample Exam Q.
- II. Nutritional Physiology in the News Pondering Paleo Nutrition Action Health Letter, Marlene Zuk, U Minnesota + Shake the salt habit! UC Berkeley Newletter. → Drink Your Calories? PEBB Identifying Nutrition Quackery, Kleiner & Monaco
- III. Nutrition Connections DC Mod 2, Sizer & Whitney (S&W) Sci Lib
 - A. Diet & endurance? What's the best path to losing weight?
 - B. Low-carbohydrate dieting? What about fasting?
 - C. Balanced approach, Dr. Sacks <u>AHA NPAM Council</u>
- IV. Gastrointestinal Physiology DC Module 3 pp 17-23, LS ch 15+
 - A. GI = Donut? GI secretions: What? Where? Why? LS p 438
 - B. How is the gut controlled?
 - C. Organ-by-organ review A&P LS tab 15-1 pp 440-1 +...
 - D. Zymogen? = Inactive precursor LS fig 15-9 p 452...
 - E. Accessory organs? Pancreas, Liver, Recycling! pp 457-63
 - F. Small intestine? Ulcers? LS fig 15-20,15-22 pp 467-8 http://www.cdc.gov/ulcer Beyond the Basics LS p 456
 - G. Large intestine? LS fig 15-24 pp 472-4

The

Paleo

7 DAYS TO LOSE WEIGHT.

FEEL GREAT, STAY YOUNG

LOREN CORDAIN, Ph.D.

The

Evolutionary Biologist Behavioral Ecologist U Minnesota

More Reasons to Shake the Salt Habit

- 2 Ca²⁺ excretion bone loss, risk of osteoporosis & fractures.
- May directly impair kidney function & †risk of kidney stones.

(4) GI cancer risk, inflammation?

I'm outta

Macronutrients & Micronutrients Essential for Life

Macronutrients

H₂O/Water

≠10 Carbohydrates

√3⁰ Proteins

Sample Food Sources

Water, other drinks, fruits & vegetables Grains, vegetables, fruits, dairy products Meats, full-fat dairy products, oils Meats, legumes, dairy

(Micronutrients) NB: Need only minute quantities!

vegetables

Vitamins (A, D, E, K; C + B)

Minerals (K+, Na+, Ca²⁺, Mg²⁺ Fe²⁺, Zn²⁺,...

Vegetables, vegetable oils, fruits, citrus, grains, dairy Fruits, vegetables, grains, nuts, dairy, meats, processed foods

Energy nutrients = yield ATP

MyPlate launched June 2, 2011

2. Focus on fruits. Whole fruit preferable to juice, but any fruit counts! Fill ½ your plate with fruits & vegetables!

- 3. Make at least ½ of your grains whole grains!
 - 5. Get your calcium-rich foods. Buy skim or 1% milk. Go easy on cheese!

1. Vary your veggies. Fill ½ your plate with fruits & vegetables!

4. <u>Go lean with protein</u>. Keep protein to < ¼ plate! Nuts, beans, peas, seeds, poultry, lean meat, seafood,...

Diet & Health Guidelines for Cancer Prevention

- 1. Choose a diet rich in variety of plant-based foods.
- 2. Eat plenty of vegetables & fruits.
- 3. Maintain a healthy weight & be physically active.
- 4. Drink alcohol only in moderation, if at all.
- 5. Select foods low in fat & salt.
- 6. Prepare & store food safely.And <u>always</u>, remember...

Do not smoke or use tobacco in any form.

American Institute for Cancer Research (AICR)

5 times per wk? \equiv 106,600 calories/yr \equiv \pm 30.5 lb fat/yr

Cinnamon Dolce Latte, whipped cream Venti (20 oz.)

Starbucks 410 calories

Jogging 50 min.

Better choices!

Figure 4–9. Changes in body weight, body fat, and lean body weight for diet, exercise, and combination groups. (From Zuti W. B., and Golding, L. A.: Comparing diet and exercise as weight reduction tools. **Phys. Sportsmed.** 4:49–53, 1976.)

NB: Each group 500 kcal deficit/day, 16 weeks

Exercise is better than dieting in lowering body fat & preserving muscles!

Dietary Composition & Physical Endurance

Negative Effects of Low Carbohydrate

- 1) † fatigue/exhaustion central & peripheral!
- 2 ↓ glucose brain+spinal cord, rbcs thrive upon.
- 3 ↓ variety which reduces intake of phytochemicals, vitamins, minerals & fiber.
- 4 ↑ risk of respiratory infections.
- + gall stones,

 ↓ thermoregulation...

To Help Lower Body Wt & %Fat EXERCISE!! + *Minimize* These!!

FAT 9 Kcal/g

ETOH 7 Kcal/g

CARB 4 Kcal/g

PRO 4 Kcal/g

NB: <u>Minimize</u> not <u>Eliminate!</u> <u>Moderation</u> not <u>Abstinence!!</u>

60-day Fast???

<u>Lost 60 lb!! Wow!!</u>

```
Yet

> 3/4

26 lb Water

20 lb Lean Body Mass

(14 lb Fat

Fat < 1/4 total wt loss!
```

Dr. Sacks' Conclusions:

We conclude that healthful diets with varying emphases on carbohydrate, fat & protein levels can all achieve clinically meaningful weight loss & maintenance of weight loss over a 2-yr period. The results give people who need to lose weight the flexibility to choose a diet that they can stick with, as long as it's heart healthy. Such diets can also be tailored for individuals based on their personal & cultural preferences & in this regard may have the best chance for long-term success.

BI 121 Lecture 7

- on your lab time. Thanks!!
- I. <u>Announcements</u> Exam I one week from today, Oct 25th! Summary & Review, Sunday Oct 23rd, 6-7:30 pm, here! Q?
- II. <u>Nutrition Final Comments & Discussion</u> Recommended diets? Nutrition Quackery? Kleiner & Monaco. Diet & disease?
- III. Gastrointestinal Physiology DC Module 3 pp 17-23, LS ch 15+
 - A. GI = Donut? GI secretions: What? Where? Why? LS p 438
 - B. How is the gut controlled?
 - C. Organ-by-organ review A&P LS tab 15-1 pp 440-1 +...
 - D. Zymogen? = Inactive precursor LS fig 15-9 p 452...
 - E. Accessory organs? Pancreas, Liver, Recycling! pp 457-63
 - F. Small intestine? Ulcers? LS fig 15-20,15-22 pp 467-8 http://www.cdc.gov/ulcer Beyond the Basics LS p 456
 - G. Large intestine? LS fig 15-24 pp 472-4
- IV. Cardiovascular System DC Mod 4, LS ch 9, Torstar, G&H+...
 - A. Circulatory vs. Cardiovascular (CV)? CV vs. Lymphatic CV Pulmonary & Systemic circuits DC pp23-31+LS p229+ DC fig 4-1 p 24, LS fig 9-2b p 231
 - B. Arteries, capillaries, veins, varicosities? G&H, Torstar, DC
 - C. Values, box, chambers, values, inlets, outlets LS fig 9-4 p 233, fig 9-2a p 231; DC pp 23-6
 - D. Normal vs. abnormal blood flow thru \ & CVS LS, Fox+...

NOT PEER-REVIEWED = TRADE BOOKS

PEER-TEXTS → RESEARCH

LOWER CARBOHYDRATE

ELIMINATE CALORIES or FOOD GROUPS **ENCOURAGE FASTING** **LOWER FAT**

ADEQUACY BALANCE CONSISTENCY **& MODERATION**

Kleiner's & Monaco's Top 10 Hit List for Nutrition Quackery

- 1. Treatment based on <u>unproven theory</u> calling for non-toxic, painless therapy.
- 2. Author's/purveyor's <u>credentials aren't recognized</u> in scientific community.
- 3. <u>No reports in scientific, peer-reviewed literature</u> but rather mass media used for marketing.
- 4. Purveyors claim <u>medical establishment is against them</u> & play on public's paranoia about phantom greed of medical establishment.
- 5. Treatments, potions, drugs manufactured according to <u>secret</u> <u>formula</u>.
- 6. Excessive claims promising <u>miraculous cures</u>, disease prevention or life extension.
- 7. Emotional images rather than facts used to support claims.
- 8. Treatments <u>require special nutritional support</u> including health food products, vitamins and/or minerals.
- 9. Clients are cautioned about discussing program to avoid negative.
- 10. Programs based on <u>drugs or treatments not labeled</u> for such use.

Digestion Steps

SOURCE: Dr. Eugene Evonuk, 1989. cf. L Sherwood, 2012 pp 437-8.

Hydrolysis of Energy Nutrients

 H_2O +

Enzyme

Polymer to Monomer (Many to One)

...Central-linking theme!!

Carbohydrate

Glucose

Protein + Fat

Amino Acids

Fatty Acids

+

Glycerol

GI-DONUT ANALOGY

Gut Secretions

<u>Secretion</u> <u>Release Site</u>

1. Mucus into GI Lumen

2. Enzymes into GI Lumen

3. H₂O, acids, bases+ into GI Lumen

4. Hormones into Blood

Anal canal

Small intestine

7.Large Intestine

Dehydration

Peristalsis

secretion + absorption storage + peristalsis

Secretion mucus + NaHCO₃ + enzymes enzymatic digestion: carbohydrate, fat, protein

Rectum

What are other accessory organs of digestion, that is, off-shoots of the primary tube?

What is the major function of the small intestine? Absorption!!

Large Intestine Structure & Function

BI 121 Lecture 8

- I. Announcements Exam I next session; 10 am & 2 pm lab sections go directly to 5 KLA & 202 CAS. All others here (100 WIL)! Review: Sunday, 6 pm here! Lab notebooks. Q?
- II. Cardiovascular Connections LS 2012 ch 9, Torstar Books+...
- **III. CV Physiology in News** AHA + NHLBI websites. Nic? ACSM, AHA, DHHS Healthy people exercise guidelines!
- IV. CV Pathophysiology & Risk Reduction LS ch 9, 10 +...
 - A. AMI, CVA, CVD, PVD, TIA, HTN? + surgical treatments
 - B. Atherosclerosis? LS fig 9-27, 9-25, 9-26 pp 266-8
 - C. How to minimize risk of CVDs? Treatment triad: Exercise, Diet, Drugs+Surgery
 - D. Food choices make a difference? What's HAPOC?

Cardiac Cycle

Contract

& Empty

Diastole

Relax

& Fill

Cardiovascular (CV) = Heart + Vessels + Blood!

NB: Figure-8 loop

Pulmonary

Vessel

Lymphatic System

- 1. Lymph Nodes
- 2. Vessels
- 3. Lymph

No pump!

Lymphatic System Blockage in Elephantiasis from Mosquito-borne Parasitic Filaria Worm

Human = 4-chambered box? 2 separate pumps?

Pulmonary Systemic

Human = 4 unique valves? 2 valve sets?

<u>Semilunar</u> = <u>Half-moon shaped</u>

- More /
- 1. Pulmonic/Pulmonary
- 2. Aortic

- More /
- 3.(R) AV = Tricuspid
- 4. L AV = Mitral/Bicuspid

<u>V</u>eins → <u>A</u>tria → <u>V</u>entricles → <u>A</u>rteries

LS2007

Guidelines: Healthy Adults < 65 yr

Do moderately intense aerobic exercise 30 min/d, 5 d/wk

OR

Do vigorously intense aerobic exercise 20 min/d, 3 d/wk

AND

Do 8-10 strength-training exercises 8-12 repetitions/each exercise, 2 d/wk

CVDs

AMI

CVA

TIA

PVD

HTN

Torstar 1984 p 77

Treatment Triad

NB: Last blasted resort!!

Drugs/Surgery

Dietary Modification

Coronary

Artery

By-pass

Graft

