BI 121 Lecture 12

- I. <u>Announcements</u> Thanks for your help with blood lab! Great job! No lab this week. Study for Exam II, Dec 8, Mon!
- *II. <u>Endocrine Connections</u>* Thyroid + Adrenals/Suprarenals LS pp 513-25 fig 17-18, 17-19; DC p 109-113 +...
- III. Introduction to the Nervous System LS ch 5, DC Module 9 A. How is the nervous system organized? LS fig 5-1 DC p 67 B. Neurons? What kind? Classes? Velocity? LS fig 5-2, 5-4
 - C. What's myelin? How does it help? DC fig 9-3, LS pp 83-5
 - D. Brain structure & function DC fig 9-6 thru 9-10 pp 71-5 +...
 - E. Protect your head with a helmet! Bicycle head injury statistics, *NHTSA* & *BHSI* from 2011, the most recent yr
- *IV. <u>Autonomic Nervous System</u>* LS ch 7 pp 178-85+...
 - A. Sympathetic vs Parasympathetic branches LS fig 7-3
 - B. Neurotransmitters & receptors LS fig 7-1 & 7-2, tab 7-2
 - C. Actions LS tab 7-1
 - D. Fight-or-flight stories!

DC 2003

LS 2012 fig 17-17

Guyton & Hall 2000

Stress Promotes Cortisol Secretion

Metabolic fuels and building blocks available to help resist stress

- ↑ Blood glucose (by stimulating gluconeogenesis and inhibiting glucose uptake)
 - Blood amino acids (by stimulating protein degradation)
- Blood fatty acids (by stimulating lipolysis)

LS 2012 fig 17-19

~ 90% of Cells w/in CNS are not neurons but glial cells ≡ neuroglia or nerve glue!

Astrocytes

LS2 2006 fig 5-4 p 112

H. Howard 1980

A single nerve cell may have as many as 200,000 inputs!

Nerve cell with multiple axons grown by adding a mitogen/neurogen ≡ nerve growth factor!

Several types of somatic sensory nerve endings.

Guyton & Hall 2011

<u>Nerve Extremes: Far ends</u> <u>of the Continuum</u>

A = Large to medium myelinated, up to <120 m/sec >

α,β, γ, δ

C = Small unmyelinated, < 0.25 m/sec.

What is myelin? Why is it important?

A large myelinated "survival" nerve can conduct impulses the length of football field in < 1 second!

L. saltare to hop or leap! Fr. salt, sautier, sauté, leap, high air, vault

DC 2003

LS 2012 fig 5-7

LS 2006, cf: LS 2012 fig 5-8a

Two somatosensory cortical areas, somatosensory areas I and II.

Section Human Brain (from above)

Sensory Homunculus

BRAIN COMPONENT

MRI 061307 Lumbar spine Lateral view

MRI 061307 Lumbar spine Axial view

Oregon Imaging

9.4 x 8.1 mm Protrusion

The "typical" bicyclist killed on our roads is a sober male over 16 riding without a helmet. He's hit by a car on a major road between intersections in an urban area on a summer evening. Please wear a helmet – it can make the difference between life and death.

Stories, Discussion, Questions or Comments!

Autonomic Nervous System

Why overlap or dual innervation?

Fine-tune control & safety!

cf: LS 2012 fig 7-3

PARASYMPATHETIC = RESTING, DIGESTIVE, HOUSEKEEPING FUNCTIONS

40b

FIGHT/FLIGHT/ALARM REACTION!!

Rest-and-digest: Parasympathetic activity dominates.

Fight-or-flight: Sympathetic activity dominates.

Copyright © 2009 Pearson Education, Inc.

D Silverthorn 2010

Autonomic Neurotransmitters & Receptors

G&H 2011 p 731-3

Nicotine activates <u>both</u> Sympathetic & Parasympathetic post-ganglionic neurons!

Like hammering the gas pedal & brake at the same time!!

Autonomic Nervous System Innervation

In Sympathetic Fight-or-Flight why is it important to activate the adrenals?

Fight-or-Flight Stories!

▲ Table 7-1 Effects of Autonomic Nervous System on Various Organs

Organ	Effect of Sympathetic Stimulation	Effect of Parasympathetic Stimulation
Heart	Increases heart rate and increases force of contraction of the whole heart	Decreases heart rate and decreases force of contrac- tion of the atria only
Blood Vessels	Constricts	Dilates vessels supplying the penis and the clitoris only
Lungs	Dilates the bronchioles (airways)	Constricts the bronchioles
Digestive Tract	Decreases motility (movement)	Increases motility
	Contracts sphincters (to prevent forward movement of tract contents)	Relaxes sphincters (to permit forward movement of tract contents)
	Inhibits digestive secretions	Stimulates digestive secretions
Urinary Bladder	Relaxes	Contracts (emptying)
Eye	Dilates the pupil	Constricts the pupil
	Adjusts the eye for far vision	Adjusts the eye for near vision
Liver (glycogen stores)	Glycogenolysis (glucose is released)	None
Adipose Cells (fat stores)	Lipolysis (fatty acids are released)	None
Exocrine Glands		
Exocrine pancreas	Inhibits pancreatic exocrine secretion	Stimulates pancreatic exocrine secretion (important for digestion)
Sweat glands	Stimulates secretion by sweat glands im- portant in cooling the body	Stimulates secretion by specialized sweat glands in the armpits and genital area
Salivary glands	Stimulates a small volume of thick saliva rich in mucus	Stimulates a large volume of watery saliva rich in enzymes
Endocrine Glands		
Adrenal medulla	Stimulates epinephrine and norepinephrine secretion	None
Endocrine pancreas	Inhibits insulin secretion	Stimulates insulin secretion
Genitals	Controls ejaculation (males) and orgasm contractions (both sexes)	Controls erection (penis in males and clitoris in females)
Brain Activity	Increases alertness	None LS 2012