BI 121, Lab 6 Pulmonary Function Testing (PFT)

I. Attendance

II. Pulmonary Function Test/PFT
A. What? Measure of static \& dynamic lung function
B. Why? Picture of lung health; absence, presence, progression of disease (eg asthma, emphysema); effectiveness of drugs
C. How? Complete PFT with computer or dinosaur spirometer
III. Crucial Clinical Measures
A. VC vital capacity = FVC forced vital capacity amount of air exhaled after maximal inhalation
B. $\mathrm{FEV}_{1.0}=$ How much of VC in 1 second? [FEV $\left.{ }_{1.0} / \mathrm{FVC}\right] \times 100$ If $\geq \mathbf{7 5 - 8 0 \%}$ ($0.75-0.80$) \rightarrow clinically normal If $\leq 40-50 \% \rightarrow$ obstructive disease (eg, asthma)
IV. Your Goals
A. Estimate your VC \& FEV ${ }_{1.0}$ from Nomogram pp 6-6 or 6-7 LLM
B. Measure these values accurately w/computer PFT LabChart
C. Compare estimated with actually assessed values to determine whether you're within a healthy range.

Respirometer \rightarrow measures complete Pulmonary Function Test or PFT!

PFT \rightarrow measures all lung volumes \& capacities (sum of ≥ 2 volumes). Subject relaxes \& breathes normally into and out of tank.

Sample PFT from Collins 13.5 L Respirometer

Normal Spirogram of Healthy Young Adult Male

Spirogram graphing

 complete PFT from computer simulation.$$
\begin{aligned}
\text { TV } & =\text { Tidal volume }(500 \mathrm{ml}) \\
\text { IRV } & =\text { Inspiratory reserve volume }(3,000 \mathrm{ml}) \\
\text { IC } & =\text { Inspiratory capacity }(3,500 \mathrm{ml}) \\
\text { ERV } & =\text { Expiratory reserve volume }(1,000 \mathrm{ml}) \\
\text { RV } & =\text { Residual volume }(1,200 \mathrm{ml}) \\
\text { FRC } & =\text { Functional residual capacity }(2,200 \mathrm{ml}) \\
\mathrm{VC} & =\text { Vital lapacity }(4,500 \mathrm{ml}) \\
\mathrm{TLC} & =\text { Total lung capacity }(5,700 \mathrm{ml})
\end{aligned}
$$

(1)Estimate, (2)Setup, (3)Assess, (4)Compare

