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show the location of the plate boundary. Seismic
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ocean-bottom hydrophones (OBH; open circles). ~ Vvertical axis is the resulting time after a static correction was applied, where the subtracted time is the onset of References Reflection and transmission coefficent analyses indicate the reflections originate from a solid boundary.

Black lines represent source locations. thefirst arrival for each trace (Pg and Pn); this was done to remove timing fluctuations caused by seafloor topography. 1. Hebert, L.B., Montesi, L.G., 2010. Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochem. Geophys. Geosyst. 11, Q12008. .. : : T : . . . .y

. Anomalous reflections are present in the 5-30 Hz range and are easily visible from 20-30 Hz 2. Durant, T.D., Toomey, D.R., 2009. Evidence and implications of crustal magmatism on the flanks of the East Pacific Rise. Earth and Planetary Science Letters. 287, * Finite difference waveform mOdelmg also indicates the reflections O”gmated from a solid to solid mterface,
. . . . ' 130-136. with the lower medium being gabbroic in composition.

« Asymmetry in T-X curve from the north to the south side of station 43 (later arrivals to the north). 3.

- High P wave energy at intermediate to wide angles with minimal S wave energy.




