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We recall that the Weil heights

H : Q× → [1,∞), and h : Q× → [0,∞),

are defined at an algebraic number α 6= 0 as

follows: let k ⊆ Q be an algebraic number field

containing α 6= 0. Then the multiplicative Weil

height of α is

H(α) =
∏
v

max{1, |α|v},

and the logarithmic Weil height of α is

h(α) =
∑
v

log+ |α|v.

The product and sum are over the set of all

places v of k, but the value of the sum is in-

dependent of the choice of k. There are no

issues of convergence because for each point

α 6= 0 in k we have |α|v = 1 at all but finitely

many places v.
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Results and open problems:

Theorem 1. (Northcott, 1949) For 1 ≤ d and

1 ≤ T , the set of algebraic numbers

{α ∈ Q : [Q(α) : Q] = d and h(α) ≤ T}

is finite.

Here is a more precise version of Northcott’s

theorem.

Theorem 2. (D. Masser, V., 2003) For 1 ≤ d

and 1 ≤ T , we have∣∣∣{α ∈ Q : [Q(α) : Q] = d and h(α) ≤ T}
∣∣∣

=
dγ(d)ed(d+1)T

2ζ(d+ 1)
+O

(
ed

2T (log 2T )
)

where

γ(d) = 2d+1(d+ 1)f
f∏

j=1

(2j)d−2j

(2j + 1)d−2j+1
,

and f = [(d− 1)/2].
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Theorem 3. (V., M. Widmer, 2011) Let k be a

number field of degree d and discriminant ∆k.

If k has a real embedding, then there exists α

in k such that k = Q(α), and

H(α) ≤ |∆k|1/2d.

If k has no real embedding we have only the

following conditional result.

Theorem 4. (V., M. Widmer, 2011) For each

d ≥ 2 there exists an effectively computable

constant C = C(d) having the following prop-

erty. Let k be a number field of degree d and

discriminant ∆k. Let l ⊆ Q be the Galois clo-

sure of k and assume that the Dedekind zeta-

function ζl(s) satisfies GRH. Then there exists

α in k such that k = Q(α), and

H(α) ≤ C|∆k|1/2d.
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Units: let k be an algebraic number field, Ok
the ring of algebraic integers in k,

O×k = multiplicative group of units in Ok,

and

Tor
(
O×k

)
= torsion subgroup of O×k
= roots of unity in O×k
= a finite, cyclic group.

Dirichlet’s unit theorem: there exists a finite

collection of multiplicatively independent units

η1, η2, . . . , ηr, and a generator ζ of Tor
(
O×k

)
, so

that every unit α has a unique representation

as

α = ζmη
n1
1 η

n2
2 · · · η

nr
r ,

where m, and n1, n2, . . . , nr, are integers. Here

r = rank
(
O×k

)
.
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Minkowski units: we now assume that k/Q
is a Galois extension of degree d. Then the

Galois group

G = Aut(k/Q)

has order d, and G acts on O×k . If α 6= 1 belongs

to O×k , then

{σ(α) : σ ∈ G} ⊆ O×k .

Minkowski proved: if k/Q is a Galois extension

and O×k has positive rank r, then there exists

a unit α in O×k such that the subgroup

〈σ(α) : σ ∈ G〉 ⊆ O×k
generated by the conjugates of α has the max-

imum possible rank r. We call a unit α with

this property a Minkowski unit.
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Theorem 5 (S. Akhtari-V.). Let η1, η2, . . . , ηr,

be multiplicatively independent elements in O×k ,

where r = rank
(
O×k

)
. Let

A = 〈η1, η2, . . . , ηr〉 ⊆ O×k
be the subgroup they generate. Then there

exists a Minkowski unit β in A such that

h(β) ≤ 2
(
h(η1) + h(η2) + · · ·+ h(ηr)

)
.

Moreover, if

B = 〈σ(β) : σ ∈ G〉,

is the subgroup of O×k generated by the conju-

gates of β, then

Reg(k)[O×k : B] ≤
(
[k : Q]h(β)

)r
,

where Reg(k) is the regulator of k.
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The Northcott property: We say that a (pos-
sibly infinite) algebraic extension K/Q has the
Northcott property, if for each positive T the
set

{α ∈ K : h(α) ≤ T}

is finite. A basic problem is to identify infi-
nite extensions K/Q that have the Northcott
property.

Let k be a number field and let k(e) be the
infinite algebraic extension of Q obtained by
adjoining to k all algebraic numbers α such that
[k(α) : k] ≤ e.
Theorem 6. (E. Bombieri, U. Zannier, 2001)
For each number field k, the field k(2) has the
Northcott property: the set

{α ∈ k(2) : h(α) ≤ T}
is finite.

For 3 ≤ e it is not known if k(e) has the North-
cott property.

8



The Bogomolov property: We say that a

(possibly infinite) algebraic extension K/Q has

the Bogomolov property if there exists δ > 0

such that

{α ∈ K× : h(α) ≤ δ}

consists only of roots of unity in K.

Theorem 7. (A. Schinzel, 1973) Let K be the

infinite Galois extension of Q generated by to-

tally real algebraic numbers. Then K has the

Bogomolov property.

Theorem 8. (F. Amoroso, R. Dvornicich, 2000)

Let K be the infinite Galois extension of Q gen-

erated by all roots of unity. Then K has the

Bogomolov property.

Theorem 9. (E. Bombieri, U. Zannier, 2001)

Let K/Q be a (possibly infinite) Galois exten-

sion, and assume that K has an embedding in

a finite extension of Qp for some prime p. Then

K has the Bogomolov property.
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Lehmer’s problem: In 1931, D. H. Lehmer

asked if there exists a positive constant c such

that

0 < h(α) implies that c ≤ [Q(α) : Q]h(α),

for all algebraic numbers α.

The smallest known positive value is

0.16235761434 · · · = [Q(α) : Q]h(α)

which occurs if α a root of

x10 + x9 − x7−x6 − x5 − x4 − x3 + x+ 1 = 0.

The strongest unconditional result is

Theorem 10. (E. Dobrowolski, 1979) There

exists a positive constant c0 such that if 0 <

h(α) then

c0

(
log log 5[Q(α) : Q]

log 2[Q(α) : Q]

)3

≤ [Q(α) : Q]h(α).
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A Banach space: Let Tor
(
Q×

)
denote the

torsion subgroup of Q× and write

G = Q×/Tor
(
Q×

)
for the quotient group. If ζ is a point in Tor

(
Q×

)
,

then h(α) = h(ζα) for all points α in Q×. Thus
we may regard the height as a map

h : G → [0,∞).

The height satisfies:

(i) h(α) = 0 if and only if α is the identity
element in G,

(ii) h(α−1) = h(α) for all α in G,

(iii) h(αβ) ≤ h(α) + h(β) for all α and β in G.

These conditions imply that the map (α, β) 7→
h(αβ−1) defines a metric on the group G and
therefore induces a metric topology.
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Let r/s denote a rational number, where r and

s are relatively prime integers and s is positive.

If α is in Q× and ζ1 and ζ2 are in Tor
(
Q×

)
, then

all roots of the two polynomial equations

xs − (ζ1α)r = 0 and xs − (ζ2α)r = 0

belong to the same coset in G. If we write αr/s

for this coset, we find that

(r/s, α) 7→ αr/s

defines a scalar product in the abelian group

G. This shows that G is a vector space (writ-

ten multiplicatively) over the field Q of rational

numbers. Moreover, we have

h
(
αr/s

)
= |r/s|∞h(α).

Therefore the map α 7→ h(α) is a norm on

the vector space G with respect to the usual

archimedean absolute value | |∞ on its field Q of

scalars. From these observations we conclude

that the completion of G is a Banach space

over the field R of real numbers.
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Let α1, α2, . . . , αN be points in the Q-vector

space G. Then write

A =
{ N∏
n=1

αξnn : ξ ∈ ZN
}

for the subgroup of rank M < N which they

generate in G. The Z-module Z of multiplica-

tive dependencies is given by

Z =
{
z ∈ ZN :

N∏
n=1

αznn = 1
}
.

Using geometry of numbers in the completion

of G with respect to the height, we obtain a

bound for the product

L∏
l=1

|zl|∞,

where z1, z2, . . . , zL are linearly independent el-

ements of Z, and also the product of the heights

of M multiplicatively independent elements from

the group A.
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Theorem 11. [V, 2014] Let

α1, α2, . . . , αN

be elements of the vector space G which gen-

erate a subgroup A of positive rank M . If

1 ≤M < N then there exist L = N −M linearly

independent elements

z1, z2, . . . , zL

in the Z-module Z, and M multiplicatively in-

dependent elements

β1, β2, . . . , βM

in the subgroup A, such that{ L∏
l=1

|zl|∞
}{ M∏

m=1

h(βm)

}
≤
{ N∑
n=1

h(αn)

}M
.
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Heights on vectors and subspaces: Let k

be a number field of degree d over Q, and let
x = (xn) be a column vector in kN . If v is an
archimedean place we define

|x|v =

(
‖x1‖2v + ‖x2‖2v + · · ·+ ‖xN‖2v

)dv/2d

.

And if v is a non-archimedean place of k we
define

|x|v = max
{
|x1|v, |x2|v, . . . , |xN |v

}
.

The Arakelov height of the nonzero vector x
in kN is

h(x) =
∑
v

log |x|v.

The Arakelov height is well defined on projec-
tive space over k. That is, if α 6= 0 belongs to
k then αx and x represent the same point in
PN−1(k). This follows from the product for-
mula:

h(αx) =
∑
v

(
log |α|v + log |x|v

)
= h(x).
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As with the Weil height, it can be shown that
h(x) does not depend on the number field that
contains the coordinates of the vector x. Thus
we find that

h : PN−1(Q)→ [0,∞).

Let ΛN(Q) be the exterior algebra over the field
Q. Let

A =
(
a1 a2 · · · aL

)
be an N × L matrix with entries in Q and 1 ≤
L = rankA < N . We recall that the wedge
product

a1 ∧ a2 ∧ · · · ∧ aL
belongs to ΛN(Q) and has

(
N
L

)
coordinates.

Each coordinate is one of the L× L subdeter-
minants of the matrix A. Therefore we define

h(A) = h(a1 ∧ a2 ∧ · · · ∧ aL)

by applying the Arakelov height to the vector
of

(
N
L

)
subdeterminants.
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If the columns of the N × L matrix

B =
(
b1 b2 · · · bL

)
span the same L-dimensional subspace A as

the columns of A, then it is known that the

two wedge products satisfy

a1 ∧ a2 ∧ · · · ∧ aL = α
(
b1 ∧ b2 ∧ · · · ∧ bL

)
for some algebraic number α 6= 0. Therefore

using the product formula we get

h(A) = h(B)

We define the Arakelov height of a subspace

A ⊆ QN of dimension L by setting

h(A) = h(A) = h(a1 ∧ a2 ∧ · · · ∧ aL).

Our remarks show that h(A) depends on the

subspace A but does not depend on the choice

of basis. Hence it is a well defined height on

the collection of subspaces of QN having di-

mension L.
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For a number field k and positive integer L let

γk(L) be Hermite’s constant for kA. The fol-

lowing result is the “dual” of Siegel’s Lemma:

Theorem 12. [E. Bombieri, V, 1983] Let

X ⊆ kN

be a subspace of dimension L. Then there

exists a basis {
ξ1, ξ2, . . . , ξL

}
for X such that

L∑
`=1

h(ξ`) ≤ 1
2L log γk(L) + h(X ).

Moreover, the constant γk(L) cannot be re-

placed by a smaller constant.
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The usual form of Siegel’s Lemma is now:

Theorem 13. [E. Bombieri, V, 1983] Let A

be an M × N matrix with rankA = M < N

and entries in k. Then there exist L = N −M
linearly independent solutions{

ξ1, ξ2, . . . , ξL
}

to the system of M linear equations

Ax = 0,

such that

L∑
`=1

h(ξ`) ≤ 1
2L log γk(L) + h

(
AT

)
.

It follows from the product formula that h
(
AT

)
is equal to the Arekalov height of the subspace

X = {x ∈ kN : Ax = 0}.

Hence this form of Siegel’s Lemma is equiva-
lent to the previous “dual” version. Note that(
N
L

)
=
(
N
M

)
.
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