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We recall that the Weil heights

H:Q" - [1,00), and h:Q" — [0,00),

are defined at an algebraic number a #= 0 as
follows: let £k C Q be an algebraic number field
containing a #= 0. Then the multiplicative Weil
height of o is

H(a) = H max{1, |a|v},
()
and the logarithmic Weil height of « is
hia) =Y log™ |aly.
v

The product and sum are over the set of all
places v of k, but the value of the sum is in-
dependent of the choice of k. There are no
issues of convergence because for each point
a #= 0 in k we have |aly = 1 at all but finitely
many places v.



Results and open problems:

Theorem 1. (Northcott, 1949) For 1 <d and
1 < 7T, the set of algebraic numbers

{a€@:[Q(a): Q] =d and h(a) < T}

is finite.

Here is a more precise version of Northcott's
theorem.

Theorem 2. (D. Masser, V., 2003) For 1 <d
and 1 <1, we have

{o€Q: Q) : Q] =d and h(a) < T}|
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and f=[(d—1)/2].



Theorem 3. (V., M. Widmer, 2011) Letk be a
number field of degree d and discriminant A;..
If k£ has a real embedding, then there exists o
in k such that k = Q(«), and

H(a) < |Agt2e

If £ has no real embedding we have only the
following conditional result.

Theorem 4. (V., M. Widmer, 2011) For each
d > 2 there exists an effectively computable
constant C = C(d) having the following prop-
erty. Let kK be a number field of degree d and
discriminant A,. Let 1| C Q be the Galois clo-
sure of k and assume that the Dedekind zeta-
function (;(s) satisfies GRH. Then there exists
o in k such that k = Q(«), and

H(a) < C|Aagt/?d.



Units: let £ be an algebraic number field, O
the ring of algebraic integers in k,

O, = multiplicative group of units in Oy,
and

torsion subgroup of O]

Tor (O,?)

roots of unity in O

= a finite, cyclic group.
Dirichlet’s unit theorem: there exists a finite
collection of multiplicatively independent units
ni,mo,...,nr, and a generator ¢ of Tor(O,?), SO
that every unit o has a unique representation
as

— m, N1 N2 n
a=C e
where m, and nqi,no,...,n,y, are integers. Here

r = rank(O,zf).



Minkowski units: we now assume that k£/Q
iIs a Galois extension of degree d. Then the
Galois group

G = Aut(k/Q)

has order d, and G acts on O;;. If « = 1 belongs
to Of, then

{o(a) 10 € G} COJ.

Minkowski proved: if k/Q is a Galois extension
and O; has positive rank r, then there exists
a unit « in OF such that the subgroup

(0(a) 10 €G) COf

generated by the conjugates of o has the max-
iImum possible rank . We call a unit a with
this property a Minkowski unit.



Theorem 5 (S. Akhtari-V.). Let n1,mo, ..., 1,
be multiplicatively independent elements in O},
where r = rank(O,j). L et

A = <77177727---7777’> go]?

be the subgroup they generate. Then there
exists a Minkowski unit 8 in 2l such that

R(B) < 2(h(m) + h(n2) + -+ + h(nr)).

Moreover, if

B = (c(B):0€q),

is the subgroup of O; generated by the conju-
gates of 3, then

Reg(k)[O} : B] < ([k: QIA(B))
where Reg(k) is the regulator of k.



The Northcott property: We say that a (pos-
sibly infinite) algebraic extension K/Q has the
Northcott property, if for each positive T' the
set

{ae K :h(a) <T}

is finite. A basic problem is to identify infi-
nite extensions K/Q that have the Northcott
property.

Let k¥ be a number field and let k(¢) be the
infinite algebraic extension of Q obtained by
adjoining to k all algebraic numbers « such that
k(o) : k] <e.

Theorem 6. (E. Bombieri, U. Zannier, 2001)
For each number field k, the field k() has the
Northcott property: the set

{a € k(2) h(a) < T}
is finite.

For 3 <e it is not known if k(¢) has the North-
cott property.



The Bogomolov property: We say that a
(possibly infinite) algebraic extension K/Q has
the Bogomolov property if there exists § > 0O
such that

{ae K* 1 h(a) <6}

consists only of roots of unity in K.
Theorem 7. (A. Schinzel, 1973) Let K be the
infinite Galois extension of Q generated by to-
tally real algebraic numbers. Then K has the
Bogomolov property.

Theorem 8. (F. Amoroso, R. Dvornicich, 2000)
et K be the infinite Galois extension of Q gen-
erated by all roots of unity. Then K has the
Bogomolov property.

Theorem 9. (E. Bombieri, U. Zannier, 2001)
Let K/Q be a (possibly infinite) Galois exten-
sion, and assume that K has an embedding in
a finite extension of Q, for some prime p. Then
K has the Bogomolov property.



Lehmer’s problem: In 1931, D. H. Lehmer
asked if there exists a positive constant ¢ such
that

0 < h(a) implies that ¢ < [Q(@) : Q]h(x),

for all algebraic numbers «.

The smallest known positive value is

0.16235761434 - -- = [Q(a) : Qlh(a)

which occurs if o a root of

x10+x9—a:7—:136—:1:5—:1;4—:1:3+x—l—1=O.

The strongest unconditional result is
Theorem 10. (E. Dobrowolski, 1979) There
exists a positive constant cg such that if 0 <
h(a) then

) (Iog log 5[Q(e) : Q]
109 2[Q(«) : Q]

3
) < [Q(a) : Qlh(a).
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A Banach space: Let Tor(@x) denote the
torsion subgroup of @X and write

G =Q"/Tor(Q")
for the quotient group. If ¢ is a point in Tor(@x),

then h(a) = h(¢a) for all points a in Q. Thus
we may regard the height as a map

h:G— [0,00).
The height satisfies:

(i) h(ae) = 0O if and only if « is the identity
element in G,

(ii) h(a=1) = h(a) for all « in G,
(iii) h(aB) < h(a) + h(B) for all « and B in G.

These conditions imply that the map («, 8) —
h(aB~1) defines a metric on the group G and
therefore induces a metric topology.
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Let r/s denote a rational number, where r and
s are relatively prime integers and s is positive.
If aisin Q" and ¢y and ¢ are in Tor(@x), then
all roots of the two polynomial equations

2° — ((1a)" =0 and z°— ({oa)" =0

belong to the same coset in G. If we write a’/s
for this coset, we find that

(r/s,a) — o'/

defines a scalar product in the abelian group
G. This shows that G is a vector space (writ-
ten multiplicatively) over the field Q of rational
numbers. Moreover, we have

h(ar/s) = |7 /s|occh ().

Therefore the map o — h(a) is a norm on
the vector space g with respect to the usual
archimedean absolute value | | on its field Q of
scalars. From these observations we conclude
that the completion of ¢ is a Banach space

over the field R of real numbers.
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Let aq,a9,...,any be points in the Q-vector
space G. Then write

N
QlZ{ 11 a%”:ﬁEZN}
n=1
for the subgroup of rank M < N which they
generate in G. The Z-module Z of multiplica-

tive dependencies is given by

N
Z:{ZEZNI Ha%n: }
n=1

Using geometry of numbers in the completion
of G with respect to the height, we obtain a
bound for the product

L
H ‘zl|007
=1
where 2z, z2,..., 2, are linearly independent el-

ements of Z, and also the product of the heights
of M multiplicatively independent elements from
the group «l.
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Theorem 11. [V, 2014] Let

x1,090,...,N

be elements of the vector space G which gen-
erate a subgroup 2 of positive rank M. If
1 < M < N then there exist L = N — M linearly
independent elements

Z1yRDy--.4y 2],

in the Z-module Z, and M multiplicatively in-
dependent elements

B1,82,...,8Mm
in the subgroup 2, such that

el ) 0]

[=1
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Heights on vectors and subspaces: Let k
be a number field of degree d over Q, and let
x = (xn) be a column vector in k. If v is an
archimedean place we define

dy/2d
2 2 2
zly = (Ilellv + ||lz2ly +--- + ||5’7N||v> :

And if v is a non-archimedean place of k we
define

@y = max {|z1]v, |22lv, . -, |20}
The Arakelov height of the nonzero vector x
in &V is

h(z) =) log|z|v.

The Arakelov height is well defined on projec-
tive space over k. That is, if a # 0 belongs to
k then ax and x represent the same point in
PN—1(k). This follows from the product for-
mula:

h(ax) = Z(Iog aly + 109 |:13|U> — h(z).

v
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As with the Weil height, it can be shown that
h(x) does not depend on the number field that
contains the coordinates of the vector . Thus
we find that

hPYVTL@Q) = [0, 00).

Let Ax(Q) be the exterior algebra over the field
Q. Let

Az(al ay --- a,L)

be an N x L matrix with entries in Q and 1 <
L = rank A < N. We recall that the wedge
product

ai Na» \---ANay,

belongs to An(Q) and has (]X) coordinates.
Each coordinate is one of the L x L subdeter-
minants of the matrix A. Therefore we define

h(A) = h(ag ANa> N ---ANay)

by applying the Arakelov height to the vector
of (Zz) subdeterminants.
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If the columns of the N x L matrix

B=(by by -+ by)

span the same L-dimensional subspace A as
the columns of A, then it is known that the
two wedge products satisfy

al/\CLQ/\---/\CLL=Oz(b1/\b2/\---/\bL)
for some algebraic number a %= 0. Therefore
using the product formula we get
h(A) = h(B)
We define the Arakelov height of a subspace
A C @N of dimension L by setting
h(A) = h(A) = h(ai1 ANas AN---Nap).

Our remarks show that h(A) depends on the
subspace A but does not depend on the choice
of basis. Hence it is a well defined height on
the collection of subspaces of @N having di-
mension L.
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For a number field k and positive integer L let
v (L) be Hermite's constant for ky. The fol-
lowing result is the “dual” of Siegel's Lemma:

Theorem 12. [E. Bombieri, V, 1983] Let
x Cc kN

be a subspace of dimension L. Then there
exists a basis

{517527 <. 7€L}
for X such that

L
S k(&) < 3L1og k(L) + h(X).
/=1

Moreover, the constant ~.(L) cannot be re-
placed by a smaller constant.
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The usual form of Siegel’'s Lemma is now:

Theorem 13. [E. Bombieri, V, 1983] Let A
be an M x N matrix with rank A = M < N
and entries in k. Then there exist L = N — M
linearly independent solutions

{517527 e 7€L}

to the system of M linear equations

Ax =0,
such that
- 1 T
>~ h(&y) < 5Llogyp(L) 4 h(AT).
(=1

It follows from the product formula that h(AT)
IS equal to the Arekalov height of the subspace

X ={xeck?: Az =0}

Hence this form of Siegel’s Lemma is equiva-
lent to the previous “dual” version. Note that

()= ()
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