Problems and results about the Weil height

1053, November 23, 2019

We recall that the Weil heights

$$
H: \overline{\mathbb{Q}}^{\times} \rightarrow[1, \infty), \quad \text { and } \quad h: \overline{\mathbb{Q}}^{\times} \rightarrow[0, \infty),
$$

are defined at an algebraic number $\alpha \neq 0$ as follows: let $k \subseteq \overline{\mathbb{Q}}$ be an algebraic number field containing $\alpha \neq 0$. Then the multiplicative Weil height of α is

$$
H(\alpha)=\prod_{v} \max \left\{1,|\alpha|_{v}\right\}
$$

and the logarithmic Weil height of α is

$$
h(\alpha)=\sum_{v} \log ^{+}|\alpha|_{v} .
$$

The product and sum are over the set of all places v of k, but the value of the sum is independent of the choice of k. There are no issues of convergence because for each point $\alpha \neq 0$ in k we have $|\alpha|_{v}=1$ at all but finitely many places v.

Results and open problems:
Theorem 1. (Northcott, 1949) For $1 \leq d$ and $1 \leq T$, the set of algebraic numbers

$$
\{\alpha \in \overline{\mathbb{Q}}:[\mathbb{Q}(\alpha): \mathbb{Q}]=d \text { and } h(\alpha) \leq T\}
$$

is finite.

Here is a more precise version of Northcott's theorem.

Theorem 2. (D. Masser, V., 2003) For $1 \leq d$ and $1 \leq T$, we have

$$
\begin{aligned}
& \mid\{\alpha \in \overline{\mathbb{Q}}:[\mathbb{Q}(\alpha): \mathbb{Q}]=d \text { and } h(\alpha) \leq T\} \mid \\
& \quad=\frac{d \gamma(d) e^{d(d+1) T}}{2 \zeta(d+1)}+O\left(e^{d^{2} T}(\log 2 T)\right)
\end{aligned}
$$

where

$$
\gamma(d)=2^{d+1}(d+1)^{f} \prod_{j=1}^{f} \frac{(2 j)^{d-2 j}}{(2 j+1)^{d-2 j+1}},
$$

and $f=[(d-1) / 2]$.

Theorem 3. (V., M. Widmer, 2011) Let k be a number field of degree d and discriminant Δ_{k}. If k has a real embedding, then there exists α in k such that $k=\mathbb{Q}(\alpha)$, and

$$
H(\alpha) \leq\left|\Delta_{k}\right|^{1 / 2 d} .
$$

If k has no real embedding we have only the following conditional result.

Theorem 4. (V., M. Widmer, 2011) For each $d \geq 2$ there exists an effectively computable constant $C=C(d)$ having the following property. Let k be a number field of degree d and discriminant Δ_{k}. Let $l \subseteq \overline{\mathbb{Q}}$ be the Galois closure of k and assume that the Dedekind zetafunction $\zeta_{l}(s)$ satisfies GRH. Then there exists α in k such that $k=\mathbb{Q}(\alpha)$, and

$$
H(\alpha) \leq C\left|\Delta_{k}\right|^{1 / 2 d} .
$$

Units: let k be an algebraic number field, O_{k} the ring of algebraic integers in k,
$O_{k}^{\times}=$multiplicative group of units in O_{k}, and

$$
\begin{aligned}
\operatorname{Tor}\left(O_{k}^{\times}\right) & =\text {torsion subgroup of } O_{k}^{\times} \\
& =\text {roots of unity in } O_{k}^{\times} \\
& =\text {a finite, cyclic group. }
\end{aligned}
$$

Dirichlet's unit theorem: there exists a finite collection of multiplicatively independent units $\eta_{1}, \eta_{2}, \ldots, \eta_{r}$, and a generator ζ of $\operatorname{Tor}\left(O_{k}^{\times}\right)$, so that every unit α has a unique representation as

$$
\alpha=\zeta^{m} \eta_{1}^{n_{1}} \eta_{2}^{n_{2}} \cdots \eta_{r}^{n_{r}}
$$

where m, and $n_{1}, n_{2}, \ldots, n_{r}$, are integers. Here

$$
r=\operatorname{rank}\left(O_{k}^{\times}\right)
$$

Minkowski units: we now assume that k / \mathbb{Q} is a Galois extension of degree d. Then the Galois group

$$
G=\operatorname{Aut}(k / \mathbb{Q})
$$

has order d, and G acts on O_{k}^{\times}. If $\alpha \neq 1$ belongs to O_{k}^{\times}, then

$$
\{\sigma(\alpha): \sigma \in G\} \subseteq O_{k}^{\times} .
$$

Minkowski proved: if k / \mathbb{Q} is a Galois extension and O_{k}^{\times}has positive rank r, then there exists a unit α in O_{k}^{\times}such that the subgroup

$$
\langle\sigma(\alpha): \sigma \in G\rangle \subseteq O_{k}^{\times}
$$

generated by the conjugates of α has the maximum possible rank r. We call a unit α with this property a Minkowski unit.

Theorem 5 (S. Akhtari-V.). Let $\eta_{1}, \eta_{2}, \ldots, \eta_{r}$, be multiplicatively independent elements in O_{k}^{\times}, where $r=\operatorname{rank}\left(O_{k}^{\times}\right)$. Let

$$
\mathfrak{A}=\left\langle\eta_{1}, \eta_{2}, \ldots, \eta_{r}\right\rangle \subseteq O_{k}^{\times}
$$

be the subgroup they generate. Then there exists a Minkowski unit β in \mathfrak{A} such that

$$
h(\beta) \leq 2\left(h\left(\eta_{1}\right)+h\left(\eta_{2}\right)+\cdots+h\left(\eta_{r}\right)\right) .
$$

Moreover, if

$$
\mathfrak{B}=\langle\sigma(\beta): \sigma \in G\rangle,
$$

is the subgroup of O_{k}^{\times}generated by the conjugates of β, then

$$
\operatorname{Reg}(k)\left[O_{k}^{\times}: \mathfrak{B}\right] \leq([k: \mathbb{Q}] h(\beta))^{r}
$$

where $\operatorname{Reg}(k)$ is the regulator of k.

The Northcott property: We say that a (possibly infinite) algebraic extension K / \mathbb{Q} has the Northcott property, if for each positive T the set

$$
\{\alpha \in K: h(\alpha) \leq T\}
$$

is finite. A basic problem is to identify infinite extensions K / \mathbb{Q} that have the Northcott property.

Let k be a number field and let $k^{(e)}$ be the infinite algebraic extension of \mathbb{Q} obtained by adjoining to k all algebraic numbers α such that $[k(\alpha): k] \leq e$.
Theorem 6. (E. Bombieri, U. Zannier, 2001) For each number field k, the field $k^{(2)}$ has the Northcott property: the set

$$
\left\{\alpha \in k^{(2)}: h(\alpha) \leq T\right\}
$$

is finite.
For $3 \leq e$ it is not known if $k^{(e)}$ has the Northcott property.

The Bogomolov property: We say that a (possibly infinite) algebraic extension K / \mathbb{Q} has the Bogomolov property if there exists $\delta>0$ such that

$$
\left\{\alpha \in K^{\times}: h(\alpha) \leq \delta\right\}
$$

consists only of roots of unity in K.
Theorem 7. (A. Schinzel, 1973) Let K be the infinite Galois extension of \mathbb{Q} generated by totally real algebraic numbers. Then K has the Bogomolov property.
Theorem 8. (F. Amoroso, R. Dvornicich, 2000) Let K be the infinite Galois extension of \mathbb{Q} generated by all roots of unity. Then K has the Bogomolov property.
Theorem 9. (E. Bombieri, U. Zannier, 2001) Let K / \mathbb{Q} be a (possibly infinite) Galois extension, and assume that K has an embedding in a finite extension of \mathbb{Q}_{p} for some prime p. Then K has the Bogomolov property.

Lehmer's problem: In 1931, D. H. Lehmer asked if there exists a positive constant c such that

$$
0<h(\alpha) \text { implies that } c \leq[\mathbb{Q}(\alpha): \mathbb{Q}] h(\alpha),
$$

for all algebraic numbers α.

The smallest known positive value is

$$
0.16235761434 \cdots=[\mathbb{Q}(\alpha): \mathbb{Q}] h(\alpha)
$$

which occurs if α a root of

$$
x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1=0 .
$$

The strongest unconditional result is Theorem 10. (E. Dobrowolski, 1979) There exists a positive constant c_{0} such that if $0<$ $h(\alpha)$ then

$$
c_{0}\left(\frac{\log \log 5[\mathbb{Q}(\alpha): \mathbb{Q}]}{\log 2[\mathbb{Q}(\alpha): \mathbb{Q}]}\right)^{3} \leq[\mathbb{Q}(\alpha): \mathbb{Q}] h(\alpha) .
$$

A Banach space: Let $\operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)$denote the torsion subgroup of $\overline{\mathbb{Q}}^{\times}$and write

$$
\mathcal{G}=\overline{\mathbb{Q}}^{\times} / \operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)
$$

for the quotient group. If ζ is a point in $\operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)$, then $h(\alpha)=h(\zeta \alpha)$ for all points α in $\overline{\mathbb{Q}}^{\times}$. Thus we may regard the height as a map

$$
h: \mathcal{G} \rightarrow[0, \infty) .
$$

The height satisfies:
(i) $h(\alpha)=0$ if and only if α is the identity element in \mathcal{G},
(ii) $h\left(\alpha^{-1}\right)=h(\alpha)$ for all α in \mathcal{G},
(iii) $h(\alpha \beta) \leq h(\alpha)+h(\beta)$ for all α and β in \mathcal{G}.

These conditions imply that the map $(\alpha, \beta) \mapsto$ $h\left(\alpha \beta^{-1}\right)$ defines a metric on the group \mathcal{G} and therefore induces a metric topology.

Let r / s denote a rational number, where r and s are relatively prime integers and s is positive. If α is in $\overline{\mathbb{Q}}^{\times}$and ζ_{1} and ζ_{2} are in $\operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)$, then all roots of the two polynomial equations

$$
x^{s}-\left(\zeta_{1} \alpha\right)^{r}=0 \quad \text { and } \quad x^{s}-\left(\zeta_{2} \alpha\right)^{r}=0
$$

belong to the same coset in \mathcal{G}. If we write $\alpha^{r / s}$ for this coset, we find that

$$
(r / s, \alpha) \mapsto \alpha^{r / s}
$$

defines a scalar product in the abelian group \mathcal{G}. This shows that \mathcal{G} is a vector space (written multiplicatively) over the field \mathbb{Q} of rational numbers. Moreover, we have

$$
h\left(\alpha^{r / s}\right)=|r / s|_{\infty} h(\alpha) .
$$

Therefore the map $\alpha \mapsto h(\alpha)$ is a norm on the vector space \mathcal{G} with respect to the usual archimedean absolute value $\left\|\|_{\infty}\right.$ on its field \mathbb{Q} of scalars. From these observations we conclude that the completion of \mathcal{G} is a Banach space over the field \mathbb{R} of real numbers.

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ be points in the \mathbb{Q}-vector space \mathcal{G}. Then write

$$
\mathfrak{A}=\left\{\prod_{n=1}^{N} \alpha_{n}^{\xi_{n}}: \boldsymbol{\xi} \in \mathbb{Z}^{N}\right\}
$$

for the subgroup of rank $M<N$ which they generate in \mathcal{G}. The \mathbb{Z}-module \mathcal{Z} of multiplicative dependencies is given by

$$
\mathcal{Z}=\left\{\boldsymbol{z} \in \mathbb{Z}^{N}: \prod_{n=1}^{N} \alpha_{n}^{z_{n}}=1\right\}
$$

Using geometry of numbers in the completion of \mathcal{G} with respect to the height, we obtain a bound for the product

$$
\prod_{l=1}^{L}\left|\boldsymbol{z}_{l}\right|_{\infty}
$$

where $\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \ldots, \boldsymbol{z}_{L}$ are linearly independent elements of \mathcal{Z}, and also the product of the heights of M multiplicatively independent elements from the group \mathfrak{A}.

Theorem 11. [V, 2014] Let

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}
$$

be elements of the vector space \mathcal{G} which generate a subgroup \mathfrak{A} of positive rank M. If $1 \leq M<N$ then there exist $L=N-M$ linearly independent elements

$$
z_{1}, z_{2}, \ldots, z_{L}
$$

in the \mathbb{Z}-module \mathcal{Z}, and M multiplicatively independent elements

$$
\beta_{1}, \beta_{2}, \ldots, \beta_{M}
$$

in the subgroup \mathfrak{A}, such that

$$
\left\{\prod_{l=1}^{L}\left|\boldsymbol{z}_{l}\right| \infty\right\}\left\{\prod_{m=1}^{M} h\left(\beta_{m}\right)\right\} \leq\left\{\sum_{n=1}^{N} h\left(\alpha_{n}\right)\right\}^{M} .
$$

Heights on vectors and subspaces: Let k be a number field of degree d over \mathbb{Q}, and let $\boldsymbol{x}=\left(x_{n}\right)$ be a column vector in k^{N}. If v is an archimedean place we define

$$
|\boldsymbol{x}|_{v}=\left(\left\|x_{1}\right\|_{v}^{2}+\left\|x_{2}\right\|_{v}^{2}+\cdots+\left\|x_{N}\right\|_{v}^{2}\right)^{d_{v} / 2 d}
$$

And if v is a non-archimedean place of k we define

$$
|\boldsymbol{x}|_{v}=\max \left\{\left|x_{1}\right| v,\left|x_{2}\right|_{v}, \ldots,\left|x_{N}\right| v\right\} .
$$

The Arakelov height of the nonzero vector \boldsymbol{x} in k^{N} is

$$
h(x)=\sum_{v} \log |x|_{v} .
$$

The Arakelov height is well defined on projective space over k. That is, if $\alpha \neq 0$ belongs to k then $\alpha \boldsymbol{x}$ and \boldsymbol{x} represent the same point in $\mathbb{P}^{N-1}(k)$. This follows from the product formula:

$$
h(\alpha \boldsymbol{x})=\sum_{v}\left(\log |\alpha|_{v}+\log |\boldsymbol{x}|_{v}\right)=h(\boldsymbol{x}) .
$$

As with the Weil height, it can be shown that $h(\boldsymbol{x})$ does not depend on the number field that contains the coordinates of the vector \boldsymbol{x}. Thus we find that

$$
h: \mathbb{P}^{N-1}(\overline{\mathbb{Q}}) \rightarrow[0, \infty) .
$$

Let $\wedge_{N}(\overline{\mathbb{Q}})$ be the exterior algebra over the field $\overline{\mathbb{Q}}$. Let

$$
A=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{L}
\end{array}\right)
$$

be an $N \times L$ matrix with entries in $\overline{\mathbb{Q}}$ and $1 \leq$ $L=\operatorname{rank} A<N$. We recall that the wedge product

$$
a_{1} \wedge a_{2} \wedge \cdots \wedge a_{L}
$$

belongs to $\wedge_{N}(\overline{\mathbb{Q}})$ and has $\binom{N}{L}$ coordinates. Each coordinate is one of the $L \times L$ subdeterminants of the matrix A. Therefore we define

$$
h(A)=h\left(\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2} \wedge \cdots \wedge \boldsymbol{a}_{L}\right)
$$

by applying the Arakelov height to the vector of $\binom{N}{L}$ subdeterminants.

If the columns of the $N \times L$ matrix

$$
B=\left(\begin{array}{llll}
\boldsymbol{b}_{1} & b_{2} & \cdots & \boldsymbol{b}_{L}
\end{array}\right)
$$

span the same L-dimensional subspace \mathcal{A} as the columns of A, then it is known that the two wedge products satisfy

$$
\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2} \wedge \cdots \wedge \boldsymbol{a}_{L}=\alpha\left(\boldsymbol{b}_{1} \wedge \boldsymbol{b}_{2} \wedge \cdots \wedge \boldsymbol{b}_{L}\right)
$$

for some algebraic number $\alpha \neq 0$. Therefore using the product formula we get

$$
h(A)=h(B)
$$

We define the Arakelov height of a subspace $\mathcal{A} \subseteq \overline{\mathbb{Q}}^{N}$ of dimension L by setting

$$
h(\mathcal{A})=h(A)=h\left(\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2} \wedge \cdots \wedge \boldsymbol{a}_{L}\right) .
$$

Our remarks show that $h(\mathcal{A})$ depends on the subspace \mathcal{A} but does not depend on the choice of basis. Hence it is a well defined height on the collection of subspaces of $\overline{\mathbb{Q}}^{N}$ having dimension L.

For a number field k and positive integer L let $\gamma_{k}(L)$ be Hermite's constant for $k_{\mathbb{A}}$. The following result is the "dual" of Siegel's Lemma:

Theorem 12. [E. Bombieri, V, 1983] Let

$$
\mathcal{X} \subseteq k^{N}
$$

be a subspace of dimension L. Then there exists a basis

$$
\left\{\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{L}\right\}
$$

for \mathcal{X} such that

$$
\sum_{\ell=1}^{L} h\left(\boldsymbol{\xi}_{\ell}\right) \leq \frac{1}{2} L \log \gamma_{k}(L)+h(\mathcal{X})
$$

Moreover, the constant $\gamma_{k}(L)$ cannot be replaced by a smaller constant.

The usual form of Siegel's Lemma is now:
Theorem 13. [E. Bombieri, V, 1983] Let A be an $M \times N$ matrix with rank $A=M<N$ and entries in k. Then there exist $L=N-M$ linearly independent solutions

$$
\left\{\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{L}\right\}
$$

to the system of M linear equations

$$
A x=0,
$$

such that

$$
\sum_{\ell=1}^{L} h\left(\boldsymbol{\xi}_{\ell}\right) \leq \frac{1}{2} L \log \gamma_{k}(L)+h\left(A^{T}\right) .
$$

It follows from the product formula that $h\left(A^{T}\right)$ is equal to the Arekalov height of the subspace

$$
\mathcal{X}=\left\{\boldsymbol{x} \in k^{N}: A \boldsymbol{x}=0\right\} .
$$

Hence this form of Siegel's Lemma is equivalent to the previous "dual" version. Note that $\binom{N}{L}=\binom{N}{M}$.

