Problems and results about the Weil height

1053, November 23, 2019

We recall that the Weil heights

$$H:\overline{\mathbb{Q}}^{\times} \to [1,\infty), \quad \text{and} \quad h:\overline{\mathbb{Q}}^{\times} \to [0,\infty),$$

are defined at an algebraic number $\alpha \neq 0$ as follows: let $k \subseteq \overline{\mathbb{Q}}$ be an algebraic number field containing $\alpha \neq 0$. Then the multiplicative Weil height of α is

$$H(\alpha) = \prod_{v} \max\{1, |\alpha|_{v}\},$$

and the logarithmic Weil height of α is

$$h(\alpha) = \sum_{v} \log^{+} |\alpha|_{v}.$$

The product and sum are over the set of all places v of k, but the value of the sum is independent of the choice of k. There are no issues of convergence because for each point $\alpha \neq 0$ in k we have $|\alpha|_v = 1$ at all but finitely many places v.

Results and open problems:

Theorem 1. (Northcott, 1949) For $1 \le d$ and $1 \le T$, the set of algebraic numbers

$$\{\alpha \in \overline{\mathbb{Q}} : [\mathbb{Q}(\alpha) : \mathbb{Q}] = d \text{ and } h(\alpha) \leq T\}$$

is finite.

Here is a more precise version of Northcott's theorem.

Theorem 2. (D. Masser, V., 2003) For $1 \le d$ and $1 \le T$, we have

$$\left| \{ \alpha \in \overline{\mathbb{Q}} : [\mathbb{Q}(\alpha) : \mathbb{Q}] = d \text{ and } h(\alpha) \leq T \} \right|$$
$$= \frac{d\gamma(d)e^{d(d+1)T}}{2\zeta(d+1)} + O\left(e^{d^2T}(\log 2T)\right)$$

where

$$\gamma(d) = 2^{d+1}(d+1)^f \prod_{j=1}^f \frac{(2j)^{d-2j}}{(2j+1)^{d-2j+1}},$$

and f = [(d-1)/2].

Theorem 3. (V., M. Widmer, 2011) Let k be a number field of degree d and discriminant Δ_k . If k has a real embedding, then there exists α in k such that $k = \mathbb{Q}(\alpha)$, and

$$H(\alpha) \le |\Delta_k|^{1/2d}$$
.

If k has no real embedding we have only the following conditional result.

Theorem 4. (V., M. Widmer, 2011) For each $d \geq 2$ there exists an effectively computable constant C = C(d) having the following property. Let k be a number field of degree d and discriminant Δ_k . Let $l \subseteq \overline{\mathbb{Q}}$ be the Galois closure of k and assume that the Dedekind zetafunction $\zeta_l(s)$ satisfies GRH. Then there exists α in k such that $k = \mathbb{Q}(\alpha)$, and

$$H(\alpha) \le C|\Delta_k|^{1/2d}$$
.

Units: let k be an algebraic number field, O_k the ring of algebraic integers in k,

 $O_k^{\times}=$ multiplicative group of units in O_k , and

Tor
$$(O_k^{\times})$$
 = torsion subgroup of O_k^{\times}
= roots of unity in O_k^{\times}
= a finite, cyclic group.

Dirichlet's unit theorem: there exists a finite collection of multiplicatively independent units $\eta_1, \eta_2, \ldots, \eta_r$, and a generator ζ of $\text{Tor}\big(O_k^{\times}\big)$, so that every unit α has a unique representation as

$$\alpha = \zeta^m \eta_1^{n_1} \eta_2^{n_2} \cdots \eta_r^{n_r},$$

where m, and n_1, n_2, \ldots, n_r , are integers. Here

$$r = \operatorname{rank}(O_k^{\times}).$$

Minkowski units: we now assume that k/\mathbb{Q} is a *Galois* extension of degree d. Then the Galois group

$$G = \operatorname{Aut}(k/\mathbb{Q})$$

has order d, and G acts on O_k^{\times} . If $\alpha \neq 1$ belongs to O_k^{\times} , then

$$\{\sigma(\alpha): \sigma \in G\} \subseteq O_k^{\times}.$$

Minkowski proved: if k/\mathbb{Q} is a Galois extension and O_k^{\times} has positive rank r, then there exists a unit α in O_k^{\times} such that the subgroup

$$\langle \sigma(\alpha) : \sigma \in G \rangle \subseteq O_k^{\times}$$

generated by the conjugates of α has the maximum possible rank r. We call a unit α with this property a *Minkowski unit*.

Theorem 5 (S. Akhtari-V.). Let $\eta_1, \eta_2, \ldots, \eta_r$, be multiplicatively independent elements in O_k^{\times} , where $r = \operatorname{rank}(O_k^{\times})$. Let

$$\mathfrak{A} = \langle \eta_1, \eta_2, \dots, \eta_r \rangle \subseteq O_k^{\times}$$

be the subgroup they generate. Then there exists a Minkowski unit β in $\mathfrak A$ such that

$$h(\beta) \leq 2(h(\eta_1) + h(\eta_2) + \cdots + h(\eta_r)).$$

Moreover, if

$$\mathfrak{B} = \langle \sigma(\beta) : \sigma \in G \rangle,$$

is the subgroup of O_k^{\times} generated by the conjugates of β , then

$$\operatorname{Reg}(k)[O_k^{\times}:\mathfrak{B}] \leq ([k:\mathbb{Q}]h(\beta))^r,$$

where Reg(k) is the regulator of k.

The Northcott property: We say that a (possibly infinite) algebraic extension K/\mathbb{Q} has the Northcott property, if for each positive T the set

$$\{\alpha \in K : h(\alpha) \le T\}$$

is finite. A basic problem is to identify infinite extensions K/\mathbb{Q} that have the Northcott property.

Let k be a number field and let $k^{(e)}$ be the infinite algebraic extension of \mathbb{Q} obtained by adjoining to k all algebraic numbers α such that $[k(\alpha):k] \leq e$.

Theorem 6. (E. Bombieri, U. Zannier, 2001) For each number field k, the field $k^{(2)}$ has the Northcott property: the set

$$\{\alpha \in k^{(2)} : h(\alpha) \le T\}$$

is finite.

For $3 \le e$ it is not known if $k^{(e)}$ has the Northcott property.

The Bogomolov property: We say that a (possibly infinite) algebraic extension K/\mathbb{Q} has the Bogomolov property if there exists $\delta>0$ such that

$$\{\alpha \in K^{\times} : h(\alpha) \leq \delta\}$$

consists only of roots of unity in K.

Theorem 7. (A. Schinzel, 1973) Let K be the infinite Galois extension of \mathbb{Q} generated by totally real algebraic numbers. Then K has the Bogomolov property.

Theorem 8. (F. Amoroso, R. Dvornicich, 2000) Let K be the infinite Galois extension of \mathbb{Q} generated by all roots of unity. Then K has the Bogomolov property.

Theorem 9. (E. Bombieri, U. Zannier, 2001) Let K/\mathbb{Q} be a (possibly infinite) Galois extension, and assume that K has an embedding in a finite extension of \mathbb{Q}_p for some prime p. Then K has the Bogomolov property.

Lehmer's problem: In 1931, D. H. Lehmer asked if there exists a positive constant c such that

 $0 < h(\alpha)$ implies that $c \leq [\mathbb{Q}(\alpha) : \mathbb{Q}]h(\alpha)$, for all algebraic numbers α .

The smallest known positive value is

$$0.16235761434\cdots = [\mathbb{Q}(\alpha) : \mathbb{Q}]h(\alpha)$$

which occurs if α a root of

$$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1 = 0.$$

The strongest unconditional result is **Theorem 10.** (E. Dobrowolski, 1979) *There* exists a positive constant c_0 such that if $0 < h(\alpha)$ then

$$c_0 \left(\frac{\log \log 5[\mathbb{Q}(\alpha) : \mathbb{Q}]}{\log 2[\mathbb{Q}(\alpha) : \mathbb{Q}]} \right)^3 \le [\mathbb{Q}(\alpha) : \mathbb{Q}]h(\alpha).$$

A Banach space: Let $Tor(\overline{\mathbb{Q}}^{\times})$ denote the torsion subgroup of $\overline{\mathbb{Q}}^{\times}$ and write

$$\mathcal{G} = \overline{\mathbb{Q}}^{\times} / \operatorname{Tor}(\overline{\mathbb{Q}}^{\times})$$

for the quotient group. If ζ is a point in $\operatorname{Tor}(\overline{\mathbb{Q}}^{\times})$, then $h(\alpha) = h(\zeta \alpha)$ for all points α in $\overline{\mathbb{Q}}^{\times}$. Thus we may regard the height as a map

$$h:\mathcal{G}\to [0,\infty).$$

The height satisfies:

- (i) $h(\alpha) = 0$ if and only if α is the identity element in \mathcal{G} ,
- (ii) $h(\alpha^{-1}) = h(\alpha)$ for all α in \mathcal{G} ,
- (iii) $h(\alpha\beta) \leq h(\alpha) + h(\beta)$ for all α and β in \mathcal{G} .

These conditions imply that the map $(\alpha, \beta) \mapsto h(\alpha\beta^{-1})$ defines a metric on the group \mathcal{G} and therefore induces a metric topology.

Let r/s denote a rational number, where r and s are relatively prime integers and s is positive. If α is in $\overline{\mathbb{Q}}^{\times}$ and ζ_1 and ζ_2 are in $\operatorname{Tor}(\overline{\mathbb{Q}}^{\times})$, then all roots of the two polynomial equations

$$x^s - (\zeta_1 \alpha)^r = 0$$
 and $x^s - (\zeta_2 \alpha)^r = 0$

belong to the same coset in \mathcal{G} . If we write $\alpha^{r/s}$ for this coset, we find that

$$(r/s, \alpha) \mapsto \alpha^{r/s}$$

defines a scalar product in the abelian group \mathcal{G} . This shows that \mathcal{G} is a vector space (written multiplicatively) over the field \mathbb{Q} of rational numbers. Moreover, we have

$$h(\alpha^{r/s}) = |r/s|_{\infty} h(\alpha).$$

Therefore the map $\alpha \mapsto h(\alpha)$ is a norm on the vector space \mathcal{G} with respect to the usual archimedean absolute value $|\cdot|_{\infty}$ on its field \mathbb{Q} of scalars. From these observations we conclude that the completion of \mathcal{G} is a Banach space over the field \mathbb{R} of real numbers.

Let $\alpha_1, \alpha_2, \dots, \alpha_N$ be points in the \mathbb{Q} -vector space \mathcal{G} . Then write

$$\mathfrak{A} = \left\{ \prod_{n=1}^{N} \alpha_n^{\xi_n} : \boldsymbol{\xi} \in \mathbb{Z}^N \right\}$$

for the subgroup of rank M < N which they generate in \mathcal{G} . The \mathbb{Z} -module \mathcal{Z} of multiplicative dependencies is given by

$$\mathcal{Z} = \left\{ \boldsymbol{z} \in \mathbb{Z}^N : \prod_{n=1}^N \alpha_n^{z_n} = 1 \right\}.$$

Using geometry of numbers in the completion of $\mathcal G$ with respect to the height, we obtain a bound for the product

$$\prod_{l=1}^{L}|z_{l}|_{\infty},$$

where z_1, z_2, \ldots, z_L are linearly independent elements of \mathcal{Z} , and also the product of the heights of M multiplicatively independent elements from the group \mathfrak{A} .

Theorem 11. [V, 2014] *Let*

$$\alpha_1, \alpha_2, \ldots, \alpha_N$$

be elements of the vector space $\mathcal G$ which generate a subgroup $\mathfrak A$ of positive rank M. If $1 \leq M < N$ then there exist L = N - M linearly independent elements

$$z_1, z_2, \ldots, z_L$$

in the \mathbb{Z} -module \mathcal{Z} , and M multiplicatively independent elements

$$\beta_1, \beta_2, \ldots, \beta_M$$

in the subgroup \mathfrak{A} , such that

$$\left\{\prod_{l=1}^{L}|z_{l}|_{\infty}\right\}\left\{\prod_{m=1}^{M}h(\beta_{m})\right\} \leq \left\{\sum_{n=1}^{N}h(\alpha_{n})\right\}^{M}.$$

Heights on vectors and subspaces: Let k be a number field of degree d over \mathbb{Q} , and let $x = (x_n)$ be a column vector in k^N . If v is an archimedean place we define

$$|\mathbf{x}|_v = \left(||x_1||_v^2 + ||x_2||_v^2 + \dots + ||x_N||_v^2 \right)^{d_v/2d}.$$

And if v is a non-archimedean place of k we define

$$|x|_v = \max\{|x_1|_v, |x_2|_v, \dots, |x_N|_v\}.$$

The Arakelov height of the nonzero vector \boldsymbol{x} in \boldsymbol{k}^N is

$$h(x) = \sum_{v} \log |x|_{v}.$$

The Arakelov height is well defined on projective space over k. That is, if $\alpha \neq 0$ belongs to k then αx and x represent the same point in $\mathbb{P}^{N-1}(k)$. This follows from the product formula:

$$h(\alpha x) = \sum_{v} \left(\log |\alpha|_v + \log |x|_v \right) = h(x).$$

As with the Weil height, it can be shown that h(x) does not depend on the number field that contains the coordinates of the vector x. Thus we find that

$$h: \mathbb{P}^{N-1}(\overline{\mathbb{Q}}) \to [0, \infty).$$

Let $\Lambda_N(\overline{\mathbb{Q}})$ be the exterior algebra over the field $\overline{\mathbb{Q}}$. Let

$$A = \begin{pmatrix} a_1 \ a_2 \ \cdots \ a_L \end{pmatrix}$$

be an $N \times L$ matrix with entries in $\overline{\mathbb{Q}}$ and $1 \leq L = \operatorname{rank} A < N$. We recall that the wedge product

$$a_1 \wedge a_2 \wedge \cdots \wedge a_L$$

belongs to $\Lambda_N(\overline{\mathbb{Q}})$ and has $\binom{N}{L}$ coordinates. Each coordinate is one of the $L \times L$ subdeterminants of the matrix A. Therefore we define

$$h(A) = h(a_1 \wedge a_2 \wedge \cdots \wedge a_L)$$

by applying the Arakelov height to the vector of $\binom{N}{L}$ subdeterminants.

If the columns of the $N \times L$ matrix

$$B = \begin{pmatrix} b_1 & b_2 & \cdots & b_L \end{pmatrix}$$

span the same L-dimensional subspace \mathcal{A} as the columns of A, then it is known that the two wedge products satisfy

$$a_1 \wedge a_2 \wedge \cdots \wedge a_L = \alpha (b_1 \wedge b_2 \wedge \cdots \wedge b_L)$$

for some algebraic number $\alpha \neq 0$. Therefore using the product formula we get

$$h(A) = h(B)$$

We define the Arakelov height of a subspace $\mathcal{A}\subseteq\overline{\mathbb{Q}}^N$ of dimension L by setting

$$h(A) = h(A) = h(a_1 \wedge a_2 \wedge \cdots \wedge a_L).$$

Our remarks show that h(A) depends on the subspace A but does *not* depend on the choice of basis. Hence it is a well defined height on the collection of subspaces of $\overline{\mathbb{Q}}^N$ having dimension L.

For a number field k and positive integer L let $\gamma_k(L)$ be Hermite's constant for $k_{\mathbb{A}}$. The following result is the "dual" of Siegel's Lemma:

Theorem 12. [E. Bombieri, V, 1983] Let

$$\mathcal{X} \subset k^N$$

be a subspace of dimension L. Then there exists a basis

$$\left\{\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{L}\right\}$$

for X such that

$$\sum_{\ell=1}^{L} h(\boldsymbol{\xi}_{\ell}) \leq \frac{1}{2} L \log \gamma_{k}(L) + h(\mathcal{X}).$$

Moreover, the constant $\gamma_k(L)$ cannot be replaced by a smaller constant.

The usual form of Siegel's Lemma is now:

Theorem 13. [E. Bombieri, V, 1983] Let A be an $M \times N$ matrix with rank A = M < N and entries in k. Then there exist L = N - M linearly independent solutions

$$\left\{ \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{L} \right\}$$

to the system of M linear equations

$$Ax = 0$$

such that

$$\sum_{\ell=1}^{L} h(\boldsymbol{\xi}_{\ell}) \leq \frac{1}{2} L \log \gamma_{k}(L) + h(A^{T}).$$

It follows from the product formula that $h\!\left(A^T\right)$ is equal to the Arekalov height of the subspace

$$\mathcal{X} = \{ x \in k^N : Ax = 0 \}.$$

Hence this form of Siegel's Lemma is equivalent to the previous "dual" version. Note that $\binom{N}{L} = \binom{N}{M}$.