Introduction to the Weil height

1041, November 23, 2019

Philosophy: let X be a set of interesting algebraic objects. By a height function we understand a map

$$h: X \to [0, \infty)$$

such that:

- (i) for x in X, the value of h(x) measures how complicated x is,
- (ii) we have h(x) = 0 if and only if x is a trivial element of X,
- (iii) for nice subsets $Y \subseteq X$ and positive numbers T, the subset

$$\{y \in Y : h(y) \le T\}$$

is a finite set.

The Weil height: the Weil height on $\overline{\mathbb{Q}}$ can be defined in two different ways.

(1.) Let $\alpha \neq 0$ be an algebraic number and

$$m_{\alpha}(x) = a_0 x^d + a_1 x^{d-1} + \dots + a_{d-1} x + a_d$$

its minimal polynomial in $\mathbb{Z}[x]$. The Weil height of α is given by

$$h(\alpha) = d^{-1} \int_0^1 \log \left| m_{\alpha} \left(e^{2\pi i t} \right) \right| dt.$$

(2.) Let k be an algebraic number field that contains $\alpha \neq 0$, and let

$$\big\{|\ |_v:v\ \mathsf{a}\ \mathsf{place}\ \mathsf{of}\ k\big\}$$

be the collection of all normalized absolute values on k. The Weil height of α is also

$$h(\alpha) = \sum_{v} \log^{+} |\alpha|_{v}.$$

Note: if $\alpha \neq 0$ then by the product formula

$$\sum_{v} \log |\alpha|_v = 0.$$

An absolute value on a field K is a map

$$\mid \cdot \mid : K \to [0, \infty)$$

that satisfies:

(i)
$$|x| = 0$$
 if and only if $x = 0$,

(ii)
$$|xy| = |x||y|$$
 for all x and y in K ,

(iii)
$$|x+y| \le |x| + |y|$$
 for all x and y in K .

For some absolute values it may happen that

(iv)
$$|x + y| \le \max\{|x|, |y|\}$$
 for all x and y in K .

The inequality (iv) is called the *strong triangle inequality*. If | | satisfies (i), (ii), and (iii), but not (iv), then | | is *archimedean*. If | | satisfies (i), (ii), and (iv), then | | is *non-archimedean*.

If $| \cdot |$ is an absolute value on K then

$$(x,y)\mapsto |x-y|$$

is a metric that induces a metric topology in K. Two absolute values are equivalent if they induce the same metric topology. An equivalence class determined by a nontrivial absolute value is called a place of K. Equivalent absolute values on K can be characterized in a simple way.

Lemma 1. Let $| \cdot |_1$ and $| \cdot |_2$ be two absolute values on K. Then the following are equivalent:

- (i) $| \cdot |_1$ and $| \cdot |_2$ induce the same metric topology in K,
- (ii) $\{x \in K : |x|_1 < 1\} = \{x \in K : |x|_2 < 1\},$
- (iii) there exists a positive number θ such that $|x|_1^{\theta} = |x|_2$ for all x in K.

We write $\| \|_{\infty}$ for the "usual" archimedean absolute value on \mathbb{Q} . For each prime number p we write $\| \|_p$ for the "usual" p-adic absolute value on \mathbb{Q} .

If $\beta \neq 0$ is a rational number then

$$\beta = \pm 2^{w_2(\beta)} 3^{w_3(\beta)} 5^{w_5(\beta)} 7^{w_7(\beta)} \dots,$$

where $\{w_q(\beta)\}$ is an integer indexed by the set of prime numbers q. The usual p-adic absolute value of β is

$$\|\beta\|_p = p^{-w_p(\beta)}.$$

Then $\| \|_p$ is a non-archimedean absolute value on \mathbb{Q} . Note that

$$\{\beta \in \mathbb{Q} : \|\beta\|_p \le 1\} = \{a/b \in \mathbb{Q} : p \nmid b\}$$

is an integral domain, and

$$\{\beta \in \mathbb{Q} : \|\beta\|_p < 1\} = \{a/b \in \mathbb{Q} : p|a, \text{ and } p \nmid b\}$$
 is its unique maximal ideal.

Using Lemma 1 we get:

Theorem 1. [Ostrowski] Every nontrivial absolute value on \mathbb{Q} is equivalent to exactly one of the absolute values in the set

$$\left\{ \| \|_{\infty}, \| \|_{2}, \| \|_{3}, \| \|_{5}, \| \|_{7}, \ldots \right\}$$

Hence the collection of all places of $\mathbb Q$ is indexed by the set

$$\{\infty,2,3,5,7,\dots\}.$$

Theorem 2. (The Product Formula in \mathbb{Q}) *If* $\beta \neq 0$ *is a rational number then*

$$\|\beta\|_{\infty} \prod_{p} \|\beta\|_{p} = 1.$$

Alternatively, we have

$$\log \|\beta\|_{\infty} + \sum_{p} \log \|\beta\|_{p} = 0.$$

Proof. Assume that $\beta \neq 0$ has the factorization

$$\beta = \pm 2^{w_2(\beta)} 3^{w_3(\beta)} 5^{w_5(\beta)} 7^{w_7(\beta)} \dots$$

Then

$$\prod_{p} \|\beta\|_{p} = \prod_{p} p^{-w_{p}(\beta)} = \|\beta\|_{\infty}^{-1},$$

which proves the product formula for \mathbb{Q} .

The Weil height of the rational number $\beta \neq 0$ is the positive number

$$H(\beta) = \max\{1, \|\beta\|_{\infty}\} \prod_{p} \max\{1, \|\beta\|_{p}\},$$

and the (logarithmic) Weil height of $\beta \neq 0$ is the nonnegative real number

$$h(\beta) = \log H(\beta) = \log^{+} \|\beta\|_{\infty} + \sum_{p} \log^{+} \|\beta\|_{p}.$$

If $\beta = r/s \neq 0$ and gcd(r,s) = 1, then

$$h(r/s) = \max\{\log ||r||_{\infty}, \log ||s||_{\infty}\},\$$

At each place u of $\mathbb Q$ the field $\mathbb Q$ is a metric space with metric defined by

$$(\alpha, \beta) \mapsto \|\alpha - \beta\|_u$$

Here we can use $u=\infty$ or u=p, where p is a prime number. We write \mathbb{Q}_u for the *completion* of \mathbb{Q} with respect to the metric induced by $\| \ \|_u$. Then $\mathbb{Q}_\infty = \mathbb{R}$ is the field of real numbers, and for each prime p the completion \mathbb{Q}_p is the field of p-adic numbers. In both cases \mathbb{Q} is a dense subfield of \mathbb{Q}_u .

Let $\overline{\mathbb{Q}_u}$ be an algebraic closure of the complete field \mathbb{Q}_u . For example, $\overline{\mathbb{Q}_\infty} = \mathbb{C}$. It turns out that the absolute value $\| \ \|_u$ on \mathbb{Q}_u has a *unique* extension to an absolute value on $\overline{\mathbb{Q}_u}$. This allows us to determine all the absolute values (and so all the places) of an algebraic number field k.

Let k/\mathbb{Q} be a number field with global degree

$$d = [k : \mathbb{Q}],$$

and v a place of k. Each absolute value from v determines the same metric topology in k. We write k_v for the completion of k with respect to the metric topology. It follows that k is a dense subfield of the complete field k_v . For example, $\mathbb{Q}_{\infty} = \mathbb{R}$, and for each prime number p, \mathbb{Q}_p is the field of p-adic numbers.

If $\| \ \|_v$ is an absolute value in the place v of k, then $\| \ \|_v$ restricted to $\mathbb Q$ must equal $\| \ \|_u$ for a unique place

$$u \in \{\infty, 2, 3, 5, 7, \dots\},\$$

such that $|| \ ||_v$ restricted to $\mathbb Q$ is an absolute value in u. In this case we write

$$v|u$$
, or " v lies over u ".

We also find that the completion k_v is a *finite* extension of the field \mathbb{Q}_u , and we write

$$d_v = [k_v : \mathbb{Q}_u].$$

for the local degree.

Let α be an algebraic number, $k = \mathbb{Q}(\alpha)$, and $d = [k : \mathbb{Q}]$. Let u be a place of \mathbb{Q} . We wish to determine $\|\alpha\|_v$ at places v of k such that v|u.

(i) Let $\alpha = \alpha_1, \alpha_2, \dots, \alpha_d$ be the conjugates of α in $\overline{\mathbb{Q}_u}$, and write

$$m_{\alpha}(x) = \prod_{j=1}^{d} (x - \alpha_j)$$

for the minimal polynomial in $\mathbb{Q}[x]$.

(ii) Factor $m_{\alpha}(x)$ into irreducible polynomials in $\mathbb{Q}_u[x]$:

$$m_{\alpha}(x) = g_1(x)g_2(x)\cdots g_J(x).$$

At this point we know there will be exactly J places v_1, v_2, \ldots, v_J , of k such that $v_j|u$.

(iii) To determine v_1 , factor $g_1(x)$ in $\overline{\mathbb{Q}_u}[x]$:

$$g_1(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{I_1}).$$

(iv) Recall that

Norm :
$$\mathbb{Q}_u(\alpha_1)^{\times} \to \mathbb{Q}_u^{\times}$$

is a homomorphism such that

Norm
$$(\alpha_1)$$
 = Norm (α_2) = \cdots
= $\alpha_1 \alpha_2 \cdots \alpha_{I_1}$
= $(-1)^{I_1} g_1(0)$.

(v) Now define $\|\alpha\|_{v_1}$ by

$$\|\alpha\|_{v_1}^{I_1} = \|\operatorname{Norm}(\alpha_1)\|_u = \|g_1(0)\|_u.$$

(vi) Some useful identities:

$$k_{v_1}=\mathbb{Q}_u(\alpha_1) \quad \text{and} \quad [k_{v_1}:\mathbb{Q}_u]=d_{v_1}=I_1.$$
 and

$$\sum_{j=1}^{J} [k_{v_j} : \mathbb{Q}_u] = \sum_{v|u} d_v = \sum_{j=1}^{J} I_j = [k : \mathbb{Q}] = d.$$

Let u be a place of $\mathbb Q$ and v a place of k such that v|u. Then $\|\ \|_v$ is an absolute value in v which extends the "usual" absolute value $\|\ \|_u$ in u. We now define a second absolute value $\|\ \|_v$ in the place v by

$$|\cdot|_v = ||\cdot|_v^{d_v/d}$$
, or $\log|\cdot|_v = \frac{d_v}{d}\log||\cdot|_u$,

where

$$d_v = [k_v : \mathbb{Q}_u]$$
 and $d = [k : \mathbb{Q}].$

The absolute values $| \cdot |_v$ are normalized.

Theorem 3. (The Product Formula) Let $\alpha \neq$ 0 be an algebraic number contained in k, then

$$\prod_{v} |\alpha|_v = 1.$$

Alternatively, we have

$$\sum_{v} \log |\alpha|_v = 0.$$

Proof: Using the previous notation, at each place u of $\mathbb Q$ we have

$$\begin{split} \sum_{v|u} d_v \log \|\alpha\|_v &= \sum_{j=1}^J I_j \log \|\alpha\|_{v_j} \\ &= \sum_{j=1}^J \log \|g_j(0)\|_u \\ &= \log \|m_\alpha(0)\|_u. \end{split}$$

Now $m_{\alpha}(0)$ is a nonzero point in \mathbb{Q} . Therefore by the product formula in \mathbb{Q} :

$$\sum_{v} \log |\alpha|_v = \sum_{u} \left(\sum_{v|u} \log |\alpha|_v \right)$$

$$= d^{-1} \sum_{u} \left(\sum_{v|u} d_v \log ||\alpha||_v \right)$$

$$= d^{-1} \sum_{u} \log ||m_{\alpha}(0)||_u$$

$$= 0.$$

This proves the product formula for each point $\alpha \neq 0$ in k.

Again let $\alpha \neq 0$ be an algebraic number contained in k. We define the multiplicative Weil height of α by

$$H(\alpha) = \prod_{v} \max\{1, |\alpha|_{v}\},$$

and the logarithmic Weil height of α by

$$h(\alpha) = \sum_{v} \log^{+} |\alpha|_{v}.$$

Here the product and sum are over the set of all places v of a number field k that contains α . It can be shown that H and h are well defined because there value does not depend on the choice of number field k that contains α . Therefore we have both

$$H:\overline{\mathbb{Q}}^{\times} \to [1,\infty), \quad \text{and} \quad h:\overline{\mathbb{Q}}^{\times} \to [0,\infty).$$

Some authors call these absolute heights.

Properties of the Weil height: Let r/s be a rational number, ζ a root of unity, and let $\alpha \neq 0$ and $\beta \neq 0$ be elements of $\overline{\mathbb{Q}}^{\times}$. Then

(i)
$$h(\alpha \pm \beta) \le \log 2 + h(\alpha) + h(\beta)$$
,

(ii)
$$h(\alpha\beta) \leq h(\alpha) + h(\beta)$$
,

(iii)
$$h(\zeta \alpha) = h(\alpha)$$
,

(iv)
$$h(\alpha^{r/s}) = |r/s|_{\infty} h(\alpha)$$
,

(v)
$$h(r/s) = \max\{\log |r|_{\infty}, \log |s|_{\infty}\},$$

(vi) $h(\alpha) = 0$ if and only if α is a root of unity.

Theorem 4. Let $\alpha \neq 0$ and $\beta \neq 0$ distinct elements of a number field k, and let S be a nonempty subset of places of k. Then we have

$$(2H(\alpha)H(\beta))^{-1} \leq \prod_{v \in S} |\alpha - \beta|_v \leq 2H(\alpha)H(\beta).$$

Proof: If v is an archimedean place of k then

$$\|\alpha - \beta\|_{v} \le \|\alpha\|_{v} + \|\beta\|_{v}$$

 $\le 2 \max\{\|\alpha\|_{v}, \|\beta\|_{v}\}$
 $\le 2 \max\{1, \|\alpha\|_{v}\} \max\{1, \|\beta\|_{v}\}$

and

$$|\alpha - \beta|_v \le 2^{d_v/d} \max\{1, |\alpha|_v\} \max\{1, |\beta|_v\}.$$

If v is non-archimedean we use the strong triangle inequality and get

$$|\alpha - \beta|_v \leq \max\{1, |\alpha|_v\} \max\{1, |\beta|_v\}.$$

Recall that

$$\sum_{v|\infty} (d_v/d) = 1.$$

It follows that

$$\prod_{v \in S} |\alpha - \beta|_v \le 2 \prod_{v \in S} \max\{1, |\alpha|_v\} \max\{1, |\beta|_v\}
\le 2H(\alpha)H(\beta).$$

This proves the upper bound.

Let T be the complement of S in the set of all places of k. If T is empty the theorem is trivial. If T is not empty

$$\prod_{v \in S} |\alpha - \beta|_v \prod_{v \in T} |\alpha - \beta|_v = 1$$

by the product formula. Therefore

$$\prod_{v \in S} |\alpha - \beta|_v^{-1} = \prod_{v \in T} |\alpha - \beta|_v$$

$$\leq 2H(\alpha)H(\beta)$$

by what we have already proved. This verifies the lower bound.

Let $\gamma \neq 0$ be contained in a number field k. Assume that

$$0 < |\gamma|_v < 1$$

for some place v of k. Then

$$\alpha = \sum_{n=1}^{\infty} \gamma^{n!}$$

is an element of the completion k_v . Let

$$\beta_N = \sum_{n=1}^N \gamma^{n!}$$

be a partial sum, which is obviously an algebraic number in k. Evidently

$$|\alpha - \beta_N|_v \le \left| \sum_{n=N+1}^{\infty} \gamma^{n!} \right|_v$$

tends rapidly to 0 as $N \to \infty$. If α is algebraic it can be shown that the lower bound in the previous inequality is false for large N. It follows that α is transcendental.

Some useful references:

E. Bombieri and W. Gubler, *Heights in Diophantine Geometry*, Cambridge U. Press, 2006

W. Narkiewicz, *Elementary and Analytic The-ory of Algebraic Numbers*, 3rd ed. Springer-Verlag, 2010

A. Weil, Arithmetic on algebraic varieties, *Annals of Math.* 53, 412-444, (1951)

A. Weil, *Basic Number Theory*, Springer-Verlag, 1973