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Philosophy: let X be a set of interesting al-

gebraic objects. By a height function we un-

derstand a map

h : X → [0,∞)

such that:

(i) for x in X, the value of h(x) measures how

complicated x is,

(ii) we have h(x) = 0 if and only if x is a trivial

element of X,

(iii) for nice subsets Y ⊆ X and positive num-

bers T , the subset

{y ∈ Y : h(y) ≤ T}

is a finite set.
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The Weil height: the Weil height on Q can
be defined in two different ways.

(1.) Let α 6= 0 be an algebraic number and

mα(x) = a0x
d + a1x

d−1 + · · ·+ ad−1x+ ad

its minimal polynomial in Z[x]. The Weil height
of α is given by

h(α) = d−1
∫ 1

0
log

∣∣∣mα

(
e2πit

)∣∣∣ dt.

(2.) Let k be an algebraic number field that
contains α 6= 0, and let{

| |v : v a place of k
}

be the collection of all normalized absolute val-
ues on k. The Weil height of α is also

h(α) =
∑
v

log+ |α|v.

Note: if α 6= 0 then by the product formula∑
v

log |α|v = 0.
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An absolute value on a field K is a map

| | : K → [0,∞)

that satisfies:

(i) |x| = 0 if and only if x = 0,

(ii) |xy| = |x||y| for all x and y in K,

(iii) |x+ y| ≤ |x|+ |y| for all x and y in K.

For some absolute values it may happen that

(iv) |x+ y| ≤ max{|x|, |y|} for all x and y in K.

The inequality (iv) is called the strong triangle
inequality. If | | satisfies (i), (ii), and (iii), but
not (iv), then | | is archimedean. If | | satisfies
(i), (ii), and (iv), then | | is non-archimedean.
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If | | is an absolute value on K then

(x, y) 7→ |x− y|
is a metric that induces a metric topology in
K. Two absolute values are equivalent if they
induce the same metric topology. An equiva-
lence class determined by a nontrivial absolute
value is called a place of K. Equivalent ab-
solute values on K can be characterized in a
simple way.

Lemma 1. Let | |1 and | |2 be two absolute
values on K. Then the following are equiva-
lent:

(i) | |1 and | |2 induce the same metric topol-
ogy in K,

(ii) {x ∈ K : |x|1 < 1} = {x ∈ K : |x|2 < 1},

(iii) there exists a positive number θ such that
|x|θ1 = |x|2 for all x in K.
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We write ‖ ‖∞ for the “usual” archimedean

absolute value on Q. For each prime number

p we write ‖ ‖p for the “usual” p-adic absolute

value on Q.

If β 6= 0 is a rational number then

β = ±2w2(β)3w3(β)5w5(β)7w7(β) . . . ,

where {wq(β)} is an integer indexed by the set

of prime numbers q. The usual p-adic absolute

value of β is

‖β‖p = p−wp(β).

Then ‖ ‖p is a non-archimedean absolute value

on Q. Note that

{β ∈ Q : ‖β‖p ≤ 1} = {a/b ∈ Q : p - b}

is an integral domain, and

{β ∈ Q : ‖β‖p < 1} = {a/b ∈ Q : p|a, and p - b}

is its unique maximal ideal.
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Using Lemma 1 we get:

Theorem 1. [Ostrowski] Every nontrivial ab-

solute value on Q is equivalent to exactly one

of the absolute values in the set{
‖ ‖∞, ‖ ‖2, ‖ ‖3, ‖ ‖5, ‖ ‖7, . . .

}
Hence the collection of all places of Q is in-

dexed by the set{
∞,2,3,5,7, . . .

}
.

The collection of nontrivial absolute values on

Q satisfies:

Theorem 2. (The Product Formula in Q) If

β 6= 0 is a rational number then

‖β‖∞
∏
p
‖β‖p = 1.

Alternatively, we have

log ‖β‖∞+
∑
p

log ‖β‖p = 0.
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Proof. Assume that β 6= 0 has the factoriza-

tion

β = ±2w2(β)3w3(β)5w5(β)7w7(β) . . . .

Then ∏
p
‖β‖p =

∏
p
p−wp(β) = ‖β‖−1

∞ ,

which proves the product formula for Q.

The Weil height of the rational number β 6= 0

is the positive number

H(β) = max{1, ‖β‖∞}
∏
p

max{1, ‖β‖p},

and the (logarithmic) Weil height of β 6= 0 is

the nonnegative real number

h(β) = logH(β) = log+ ‖β‖∞+
∑
p

log+ ‖β‖p.

If β = r/s 6= 0 and gcd(r, s) = 1, then

h(r/s) = max{log ‖r‖∞, log ‖s‖∞},
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At each place u of Q the field Q is a metric

space with metric defined by

(α, β) 7→ ‖α− β‖u,

Here we can use u =∞ or u = p, where p is a

prime number. We write Qu for the completion

of Q with respect to the metric induced by ‖ ‖u.

Then Q∞ = R is the field of real numbers, and

for each prime p the completion Qp is the field

of p-adic numbers. In both cases Q is a dense

subfield of Qu.

Let Qu be an algebraic closure of the complete

field Qu. For example, Q∞ = C. It turns out

that the absolute value ‖ ‖u on Qu has a unique

extension to an absolute value on Qu. This

allows us to determine all the absolute values

(and so all the places) of an algebraic number

field k.
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Let k/Q be a number field with global degree

d = [k : Q],

and v a place of k. Each absolute value from v
determines the same metric topology in k. We
write kv for the completion of k with respect
to the metric topology. It follows that k is a
dense subfield of the complete field kv. For
example, Q∞ = R, and for each prime number
p, Qp is the field of p-adic numbers.

If ‖ ‖v is an absolute value in the place v of k,
then ‖ ‖v restricted to Q must equal ‖ ‖u for a
unique place

u ∈ {∞,2,3,5,7, . . . },
such that ‖ ‖v restricted to Q is an absolute
value in u. In this case we write

v|u, or “v lies over u”.

We also find that the completion kv is a finite
extension of the field Qu, and we write

dv = [kv : Qu].

for the local degree.
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Let α be an algebraic number, k = Q(α), and
d = [k : Q]. Let u be a place of Q. We wish to
determine ‖α‖v at places v of k such that v|u.

(i) Let α = α1, α2, . . . , αd be the conjugates of
α in Qu, and write

mα(x) =
d∏

j=1

(x− αj)

for the minimal polynomial in Q[x].

(ii) Factor mα(x) into irreducible polynomials
in Qu[x]:

mα(x) = g1(x)g2(x) · · · gJ(x).

At this point we know there will be exactly
J places v1, v2, . . . , vJ, of k such that vj|u.

(iii) To determine v1, factor g1(x) in Qu[x]:

g1(x) = (x− α1)(x− α2) · · · (x− αI1).
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(iv) Recall that

Norm : Qu(α1)× → Q×u
is a homomorphism such that

Norm(α1) = Norm(α2) = · · ·
= α1α2 · · ·αI1
= (−1)I1g1(0).

(v) Now define ‖α‖v1 by

‖α‖I1v1 = ‖Norm(α1)‖u = ‖g1(0)‖u.

(vi) Some useful identities:

kv1 = Qu(α1) and [kv1 : Qu] = dv1 = I1.

and

J∑
j=1

[kvj : Qu] =
∑
v|u

dv =
J∑

j=1

Ij = [k : Q] = d.
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Let u be a place of Q and v a place of k such

that v|u. Then ‖ ‖v is an absolute value in v

which extends the “usual” absolute value ‖ ‖u
in u. We now define a second absolute value

| |v in the place v by

| |v = ‖ ‖dv/dv , or log | |v =
dv

d
log ‖ ‖u,

where

dv = [kv : Qu] and d = [k : Q].

The absolute values | |v are normailzed.

Theorem 3. (The Product Formula) Let α 6=
0 be an algebraic number contained in k, then∏

v
|α|v = 1.

Alternatively, we have∑
v

log |α|v = 0.
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Proof: Using the previous notation, at each

place u of Q we have

∑
v|u

dv log ‖α‖v =
J∑

j=1

Ij log ‖α‖vj

=
J∑

j=1

log ‖gj(0)‖u

= log ‖mα(0)‖u.

Now mα(0) is a nonzero point in Q. Therefore

by the product formula in Q:

∑
v

log |α|v =
∑
u

(∑
v|u

log |α|v
)

= d−1∑
u

(∑
v|u

dv log ‖α‖v
)

= d−1∑
u

log ‖mα(0)‖u

= 0.

This proves the product formula for each point

α 6= 0 in k.
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Again let α 6= 0 be an algebraic number con-

tained in k. We define the multiplicative Weil

height of α by

H(α) =
∏
v

max{1, |α|v},

and the logarithmic Weil height of α by

h(α) =
∑
v

log+ |α|v.

Here the product and sum are over the set of

all places v of a number field k that contains

α. It can be shown that H and h are well

defined because there value does not depend

on the choice of number field k that contains

α. Therefore we have both

H : Q× → [1,∞), and h : Q× → [0,∞).

Some authors call these absolute heights.
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Properties of the Weil height: Let r/s be

a rational number, ζ a root of unity, and let

α 6= 0 and β 6= 0 be elements of Q×. Then

(i) h(α± β) ≤ log 2 + h(α) + h(β),

(ii) h(αβ) ≤ h(α) + h(β),

(iii) h(ζα) = h(α),

(iv) h
(
αr/s

)
= |r/s|∞h(α),

(v) h(r/s) = max{log |r|∞, log |s|∞},

(vi) h(α) = 0 if and only if α is a root of unity.
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Theorem 4. Let α 6= 0 and β 6= 0 distinct

elements of a number field k, and let S be a

nonempty subset of places of k. Then we have(
2H(α)H(β)

)−1
≤

∏
v∈S
|α− β|v ≤ 2H(α)H(β).

Proof: If v is an archimedean place of k then

‖α− β‖v ≤ ‖α‖v + ‖β‖v
≤ 2 max{‖α‖v, ‖β‖v}
≤ 2 max{1, ‖α‖v}max{1, ‖β‖v}

and

|α− β|v ≤ 2dv/dmax{1, |α|v}max{1, |β|v}.

If v is non-archimedean we use the strong tri-

angle inequality and get

|α− β|v ≤ max{1, |α|v}max{1, |β|v}.

Recall that ∑
v|∞

(dv/d) = 1.
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It follows that∏
v∈S
|α− β|v ≤ 2

∏
v∈S

max{1, |α|v}max{1, |β|v}

≤ 2H(α)H(β).

This proves the upper bound.

Let T be the complement of S in the set of

all places of k. If T is empty the theorem is

trivial. If T is not empty∏
v∈S
|α− β|v

∏
v∈T
|α− β|v = 1

by the product formula. Therefore∏
v∈S
|α− β|−1

v =
∏
v∈T
|α− β|v

≤ 2H(α)H(β)

by what we have already proved. This verifies

the lower bound.
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Let γ 6= 0 be contained in a number field k.

Assume that

0 < |γ|v < 1

for some place v of k. Then

α =
∞∑
n=1

γn!

is an element of the completion kv. Let

βN =
N∑
n=1

γn!

be a partial sum, which is obviously an alge-

braic number in k. Evidently

|α− βN |v ≤
∣∣∣∣ ∞∑
n=N+1

γn!
∣∣∣∣
v

tends rapidly to 0 as N → ∞. If α is alge-

braic it can be shown that the lower bound in

the previous inequality is false for large N . It

follows that α is transcendental.
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