Introduction to the Weil height

$$
\text { 1041, November 23, } 2019
$$

Philosophy: let X be a set of interesting algebraic objects. By a height function we understand a map

$$
h: X \rightarrow[0, \infty)
$$

such that:
(i) for x in X, the value of $h(x)$ measures how complicated x is,
(ii) we have $h(x)=0$ if and only if x is a trivial element of X,
(iii) for nice subsets $Y \subseteq X$ and positive numbers T, the subset

$$
\{y \in Y: h(y) \leq T\}
$$

is a finite set.

The Weil height: the Weil height on $\overline{\mathbb{Q}}$ can be defined in two different ways.
(1.) Let $\alpha \neq 0$ be an algebraic number and

$$
m_{\alpha}(x)=a_{0} x^{d}+a_{1} x^{d-1}+\cdots+a_{d-1} x+a_{d}
$$

its minimal polynomial in $\mathbb{Z}[x]$. The Weil height of α is given by

$$
h(\alpha)=d^{-1} \int_{0}^{1} \log \left|m_{\alpha}\left(e^{2 \pi i t}\right)\right| \mathrm{d} t .
$$

(2.) Let k be an algebraic number field that contains $\alpha \neq 0$, and let

$$
\left\{\left|\left.\right|_{v}: v \text { a place of } k\right\}\right.
$$

be the collection of all normalized absolute values on k. The Weil height of α is also

$$
h(\alpha)=\sum_{v} \log ^{+}|\alpha|_{v} .
$$

Note: if $\alpha \neq 0$ then by the product formula

$$
\sum_{v} \log |\alpha|_{v}=0 .
$$

An absolute value on a field K is a map

$$
|\mid: K \rightarrow[0, \infty)
$$

that satisfies:
(i) $|x|=0$ if and only if $x=0$,
(ii) $|x y|=|x||y|$ for all x and y in K,
(iii) $|x+y| \leq|x|+|y|$ for all x and y in K.

For some absolute values it may happen that
(iv) $|x+y| \leq \max \{|x|,|y|\}$ for all x and y in K.

The inequality (iv) is called the strong triangle inequality. If || satisfies (i), (ii), and (iii), but not (iv), then || is archimedean. If || satisfies (i), (ii), and (iv), then || is non-archimedean.

If || is an absolute value on K then

$$
(x, y) \mapsto|x-y|
$$

is a metric that induces a metric topology in K. Two absolute values are equivalent if they induce the same metric topology. An equivalence class determined by a nontrivial absolute value is called a place of K. Equivalent absolute values on K can be characterized in a simple way.

Lemma 1. Let | $\left.\right|_{1}$ and $\left|\left.\right|_{2}\right.$ be two absolute values on K. Then the following are equivalent:
(i) $\left.\left|\left.\right|_{1}\right.$ and $|\right|_{2}$ induce the same metric topology in K,
(ii) $\left\{x \in K:|x|_{1}<1\right\}=\left\{x \in K:|x|_{2}<1\right\}$,
(iii) there exists a positive number θ such that $|x|_{1}^{\theta}=|x|_{2}$ for all x in K.

We write $\left\|\|_{\infty}\right.$ for the "usual" archimedean absolute value on \mathbb{Q}. For each prime number p we write $\left\|\|_{p}\right.$ for the "usual" p-adic absolute value on \mathbb{Q}.

If $\beta \neq 0$ is a rational number then

$$
\beta= \pm 2^{w_{2}(\beta)} 3^{w_{3}(\beta)} 5^{w_{5}(\beta)} 7^{w_{7}(\beta)} \ldots
$$

where $\left\{w_{q}(\beta)\right\}$ is an integer indexed by the set of prime numbers q. The usual p-adic absolute value of β is

$$
\|\beta\|_{p}=p^{-w_{p}(\beta)}
$$

Then $\left\|\|_{p}\right.$ is a non-archimedean absolute value on \mathbb{Q}. Note that

$$
\left\{\beta \in \mathbb{Q}:\|\beta\|_{p} \leq 1\right\}=\{a / b \in \mathbb{Q}: p \nmid b\}
$$

is an integral domain, and

$$
\left\{\beta \in \mathbb{Q}:\|\beta\|_{p}<1\right\}=\{a / b \in \mathbb{Q}: p \mid a, \text { and } p \nmid b\}
$$

is its unique maximal ideal.

Using Lemma 1 we get:
Theorem 1. [Ostrowski] Every nontrivial absolute value on \mathbb{Q} is equivalent to exactly one of the absolute values in the set

$$
\left\{\left\|\left\|_{\infty},\right\|\right\|_{2},\| \|_{3},\| \|_{5},\| \|_{7}, \ldots\right\}
$$

Hence the collection of all places of \mathbb{Q} is indexed by the set

$$
\{\infty, 2,3,5,7, \ldots\}
$$

The collection of nontrivial absolute values on \mathbb{Q} satisfies:

Theorem 2. (The Product Formula in \mathbb{Q}) If $\beta \neq 0$ is a rational number then

$$
\|\beta\|_{\infty} \prod_{p}\|\beta\|_{p}=1
$$

Alternatively, we have

$$
\log \|\beta\|_{\infty}+\sum_{p} \log \|\beta\|_{p}=0
$$

Proof. Assume that $\beta \neq 0$ has the factorization

$$
\beta= \pm 2^{w_{2}(\beta)} 3^{w_{3}(\beta)} 5^{w_{5}(\beta)} 7^{w_{7}(\beta)} \ldots .
$$

Then

$$
\prod_{p}\|\beta\|_{p}=\prod_{p} p^{-w_{p}(\beta)}=\|\beta\|_{\infty}^{-1}
$$

which proves the product formula for \mathbb{Q}.

The Weil height of the rational number $\beta \neq 0$ is the positive number

$$
H(\beta)=\max \left\{1,\|\beta\|_{\infty}\right\} \prod_{p} \max \left\{1,\|\beta\|_{p}\right\},
$$

and the (logarithmic) Weil height of $\beta \neq 0$ is the nonnegative real number

$$
h(\beta)=\log H(\beta)=\log ^{+}\|\beta\|_{\infty}+\sum_{p} \log ^{+}\|\beta\|_{p}
$$

If $\beta=r / s \neq 0$ and $\operatorname{gcd}(r, s)=1$, then

$$
h(r / s)=\max \left\{\log \|r\|_{\infty}, \log \|s\|_{\infty}\right\}
$$

At each place u of \mathbb{Q} the field \mathbb{Q} is a metric space with metric defined by

$$
(\alpha, \beta) \mapsto\|\alpha-\beta\|_{u},
$$

Here we can use $u=\infty$ or $u=p$, where p is a prime number. We write \mathbb{Q}_{u} for the completion of \mathbb{Q} with respect to the metric induced by $\left\|\|_{u}\right.$. Then $\mathbb{Q}_{\infty}=\mathbb{R}$ is the field of real numbers, and for each prime p the completion \mathbb{Q}_{p} is the field of p-adic numbers. In both cases \mathbb{Q} is a dense subfield of $\mathbb{Q} u$.

Let $\overline{\mathbb{Q}_{u}}$ be an algebraic closure of the complete field \mathbb{Q}_{u}. For example, $\overline{\mathbb{Q}}=\mathbb{C}$. It turns out that the absolute value $\left\|\|_{u}\right.$ on \mathbb{Q}_{u} has a unique extension to an absolute value on $\overline{\mathbb{Q}}$. This allows us to determine all the absolute values (and so all the places) of an algebraic number field k.

Let k / \mathbb{Q} be a number field with global degree

$$
d=[k: \mathbb{Q}]
$$

and v a place of k. Each absolute value from v determines the same metric topology in k. We write k_{v} for the completion of k with respect to the metric topology. It follows that k is a dense subfield of the complete field k_{v}. For example, $\mathbb{Q}_{\infty}=\mathbb{R}$, and for each prime number p, \mathbb{Q}_{p} is the field of p-adic numbers.

If $\left\|\|_{v}\right.$ is an absolute value in the place v of k, then $\|\| v$ restricted to \mathbb{Q} must equal $\| \|_{u}$ for a unique place

$$
u \in\{\infty, 2,3,5,7, \ldots\}
$$

such that $\left\|\|_{v}\right.$ restricted to \mathbb{Q} is an absolute value in u. In this case we write

$$
v \mid u, \quad \text { or " } v \text { lies over } u \text { ". }
$$

We also find that the completion k_{v} is a finite extension of the field $\mathbb{Q} u$, and we write

$$
d_{v}=\left[k_{v}: \mathbb{Q}_{u}\right]
$$

for the local degree.

Let α be an algebraic number, $k=\mathbb{Q}(\alpha)$, and $d=[k: \mathbb{Q}]$. Let u be a place of \mathbb{Q}. We wish to determine $\|\alpha\|_{v}$ at places v of k such that $v \mid u$.
(i) Let $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}$ be the conjugates of α in $\overline{\mathbb{Q}_{u}}$, and write

$$
m_{\alpha}(x)=\prod_{j=1}^{d}\left(x-\alpha_{j}\right)
$$

for the minimal polynomial in $\mathbb{Q}[x]$.
(ii) Factor $m_{\alpha}(x)$ into irreducible polynomials in $\mathbb{Q}_{u}[x]$:

$$
m_{\alpha}(x)=g_{1}(x) g_{2}(x) \cdots g_{J}(x)
$$

At this point we know there will be exactly J places $v_{1}, v_{2}, \ldots, v_{J}$, of k such that $v_{j} \mid u$.
(iii) To determine v_{1}, factor $g_{1}(x)$ in $\overline{\mathbb{Q}}[x]$:

$$
g_{1}(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{I_{1}}\right) .
$$

(iv) Recall that

Norm: $\mathbb{Q}_{u}\left(\alpha_{1}\right)^{\times} \rightarrow \mathbb{Q}_{u}^{\times}$
is a homomorphism such that
$\operatorname{Norm}\left(\alpha_{1}\right)=\operatorname{Norm}\left(\alpha_{2}\right)=\cdots$

$$
\begin{aligned}
& =\alpha_{1} \alpha_{2} \cdots \alpha_{I_{1}} \\
& =(-1)^{I_{1}} g_{1}(0)
\end{aligned}
$$

(v) Now define $\|\alpha\|_{v_{1}}$ by

$$
\|\alpha\|_{v_{1}}^{I_{1}}=\left\|\operatorname{Norm}\left(\alpha_{1}\right)\right\|_{u}=\left\|g_{1}(0)\right\|_{u}
$$

(vi) Some useful identities:

$$
k_{v_{1}}=\mathbb{Q}_{u}\left(\alpha_{1}\right) \quad \text { and } \quad\left[k_{v_{1}}: \mathbb{Q}_{u}\right]=d_{v_{1}}=I_{1}
$$

and

$$
\sum_{j=1}^{J}\left[k_{v_{j}}: \mathbb{Q}_{u}\right]=\sum_{v \mid u} d_{v}=\sum_{j=1}^{J} I_{j}=[k: \mathbb{Q}]=d
$$

Let u be a place of \mathbb{Q} and v a place of k such that $v \mid u$. Then $\left\|\|_{v}\right.$ is an absolute value in v which extends the "usual" absolute value $\left\|\|_{u}\right.$ in u. We now define a second absolute value $\left|\left.\right|_{v}\right.$ in the place v by

$$
\left.\left|\mid v=\| \|_{v}^{d_{v} / d}, \quad \text { or } \quad \log \right|\right|_{v}=\frac{d_{v}}{d} \log \| \|_{u}
$$

where

$$
d_{v}=\left[k_{v}: \mathbb{Q}_{u}\right] \quad \text { and } \quad d=[k: \mathbb{Q}] .
$$

The absolute values $\left|\left.\right|_{v}\right.$ are normailzed.
Theorem 3. (The Product Formula) Let $\alpha \neq$ 0 be an algebraic number contained in k, then

$$
\prod_{v}|\alpha|_{v}=1
$$

Alternatively, we have

$$
\sum_{v} \log |\alpha|_{v}=0
$$

Proof: Using the previous notation, at each place u of \mathbb{Q} we have

$$
\begin{aligned}
\sum_{v \mid u} d_{v} \log \|\alpha\|_{v} & =\sum_{j=1}^{J} I_{j} \log \|\alpha\|_{v_{j}} \\
& =\sum_{j=1}^{J} \log \left\|g_{j}(0)\right\|_{u} \\
& =\log \left\|m_{\alpha}(0)\right\|_{u}
\end{aligned}
$$

Now $m_{\alpha}(0)$ is a nonzero point in \mathbb{Q}. Therefore by the product formula in \mathbb{Q} :

$$
\begin{aligned}
\sum_{v} \log |\alpha|_{v} & =\sum_{u}\left(\sum_{v \mid u} \log |\alpha|_{v}\right) \\
& =d^{-1} \sum_{u}\left(\sum_{v \mid u} d_{v} \log \|\alpha\|_{v}\right) \\
& =d^{-1} \sum_{u} \log \left\|m_{\alpha}(0)\right\|_{u} \\
& =0 .
\end{aligned}
$$

This proves the product formula for each point $\alpha \neq 0$ in k.

Again let $\alpha \neq 0$ be an algebraic number contained in k. We define the multiplicative Weil height of α by

$$
H(\alpha)=\prod_{v} \max \left\{1,|\alpha|_{v}\right\}
$$

and the logarithmic Weil height of α by

$$
h(\alpha)=\sum_{v} \log ^{+}|\alpha|_{v} .
$$

Here the product and sum are over the set of all places v of a number field k that contains α. It can be shown that H and h are well defined because there value does not depend on the choice of number field k that contains α. Therefore we have both

$$
H: \overline{\mathbb{Q}}^{\times} \rightarrow[1, \infty), \quad \text { and } \quad h: \overline{\mathbb{Q}}^{\times} \rightarrow[0, \infty) .
$$

Some authors call these absolute heights.

Properties of the Weil height: Let r / s be a rational number, ζ a root of unity, and let $\alpha \neq 0$ and $\beta \neq 0$ be elements of $\overline{\mathbb{Q}}^{\times}$. Then
(i) $h(\alpha \pm \beta) \leq \log 2+h(\alpha)+h(\beta)$,
(ii) $h(\alpha \beta) \leq h(\alpha)+h(\beta)$,
(iii) $h(\zeta \alpha)=h(\alpha)$,
(iv) $h\left(\alpha^{r / s}\right)=|r / s|_{\infty} h(\alpha)$,
(v) $h(r / s)=\max \left\{\log |r|_{\infty}, \log |s|_{\infty}\right\}$,
(vi) $h(\alpha)=0$ if and only if α is a root of unity.

Theorem 4. Let $\alpha \neq 0$ and $\beta \neq 0$ distinct elements of a number field k, and let S be a nonempty subset of places of k. Then we have

$$
(2 H(\alpha) H(\beta))^{-1} \leq \prod_{v \in S}|\alpha-\beta|_{v} \leq 2 H(\alpha) H(\beta)
$$

Proof: If v is an archimedean place of k then

$$
\begin{aligned}
\|\alpha-\beta\|_{v} & \leq\|\alpha\|_{v}+\|\beta\|_{v} \\
& \leq 2 \max \left\{\|\alpha\|_{v},\|\beta\|_{v}\right\} \\
& \leq 2 \max \left\{1,\|\alpha\|_{v}\right\} \max \left\{1,\|\beta\|_{v}\right\}
\end{aligned}
$$

and

$$
|\alpha-\beta|_{v} \leq 2^{d_{v} / d} \max \left\{1,|\alpha|_{v}\right\} \max \left\{1,|\beta|_{v}\right\}
$$

If v is non-archimedean we use the strong triangle inequality and get

$$
|\alpha-\beta|_{v} \leq \max \left\{1,|\alpha|_{v}\right\} \max \left\{1,|\beta|_{v}\right\}
$$

Recall that

$$
\sum_{v \mid \infty}\left(d_{v} / d\right)=1
$$

It follows that

$$
\begin{aligned}
\prod_{v \in S}|\alpha-\beta|_{v} & \leq 2 \prod_{v \in S} \max \left\{1,|\alpha|_{v}\right\} \max \left\{1,|\beta|_{v}\right\} \\
& \leq 2 H(\alpha) H(\beta)
\end{aligned}
$$

This proves the upper bound.

Let T be the complement of S in the set of all places of k. If T is empty the theorem is trivial. If T is not empty

$$
\prod_{v \in S}|\alpha-\beta|_{v} \prod_{v \in T}|\alpha-\beta|_{v}=1
$$

by the product formula. Therefore

$$
\begin{aligned}
\prod_{v \in S}|\alpha-\beta|_{v}^{-1} & =\prod_{v \in T}|\alpha-\beta|_{v} \\
& \leq 2 H(\alpha) H(\beta)
\end{aligned}
$$

by what we have already proved. This verifies the lower bound.

Let $\gamma \neq 0$ be contained in a number field k. Assume that

$$
0<|\gamma|_{v}<1
$$

for some place v of k. Then

$$
\alpha=\sum_{n=1}^{\infty} \gamma^{n!}
$$

is an element of the completion k_{v}. Let

$$
\beta_{N}=\sum_{n=1}^{N} \gamma^{n!}
$$

be a partial sum, which is obviously an algebraic number in k. Evidently

$$
\left|\alpha-\beta_{N}\right| v \leq\left|\sum_{n=N+1}^{\infty} \gamma^{n!}\right|_{v}
$$

tends rapidly to 0 as $N \rightarrow \infty$. If α is algebraic it can be shown that the lower bound in the previous inequality is false for large N. It follows that α is transcendental.

Some useful references:
E. Bombieri and W. Gubler, Heights in Diophantine Geometry, Cambridge U. Press, 2006
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed. SpringerVerlag, 2010
A. Weil, Arithmetic on algebraic varieties, Annals of Math. 53, 412-444, (1951)
A. Weil, Basic Number Theory, Springer-Verlag, 1973

