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Philosophy: let X be a set of interesting al-
gebraic objects. By a height function we un-
derstand a map

h:X — [0,00)
such that:

(i) for z in X, the value of h(xz) measures how
complicated zx is,

(ii) we have h(x) = 0 if and only if z is a trivial
element of X,

(iii) for nice subsets Y C X and positive num-
bers T, the subset

{yeY :h(y) <T}

is a finite set.



The Weil height: the Weil height on Q can
be defined in two different ways.

(1.) Let o % O be an algebraic number and

ma(x) = aoxd -+ alxd_l + -+ ag_1x + ay
its minimal polynomial in Z[z]. The Weil height
of « is given by

ha) =d ! /O ' |og)ma(627”5t)) dt.

(2.) Let k£ be an algebraic number field that
contains a # 0, and let

{\ lv 1 v a place of k}

be the collection of all normalized absolute val-
ues on k. The Weil height of « is also

() =Y log™ |ale,
v

Note: if a = 0 then by the product formula
> log|aly = 0.
v



An absolute value on a field K is a map

| |+ K — [0, 00)
that satisfies:

(i) || =0 if and only if z = 0,
(i) |xy| = |z||y| for all £ and y in K,
(iii) |z + y| < |z| + |y| for all z and y in K.
For some absolute values it may happen that
(iv) |z 4+ y| < max{|z|,|y|} for all x and y in K.

The inequality (iv) is called the strong triangle
inequality. If | | satisfies (i), (ii), and (iii), but
not (iv), then | | is archimedean. If | | satisfies
(i), (ii), and (iv), then | | is non-archimedean.
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If | | is an absolute value on K then

(z,y) = |z —y
IS a metric that induces a metric topology in
K. Two absolute values are equivalent if they
induce the same metric topology. An equiva-
lence class determined by a nontrivial absolute
value is called a place of K. Equivalent ab-

solute values on K can be characterized in a
simple way.

Lemma 1. Let | |1 and | | be two absolute
values on K. Then the following are equiva-
lent:

(i) | |1 and | |» induce the same metric topol-
ogy in K,

(i) {re K : |lx1 <1l}={z e K :|x|p < 1},

(iii) there exists a positive number 0 such that
z|{ = |z|5 for all x in K.



We write || || for the *“usual” archimedean
absolute value on Q. For each prime number
p we write || ||, for the “usual” p-adic absolute
value on Q.

If 8 # 0 is a rational number then

3 = fow2(B)gw3(B)gws(B)7wr(B)

. oy

where {wq(B)} is an integer indexed by the set
of prime numbers q. The usual p-adic absolute
value of (3 is

18llp = p~» ).

Then || ||p is @ non-archimedean absolute value
on Q. Note that

{BeQ:|Bllp<1}t={a/becQ:ptb}

IS an integral domain, and

1BeQ:|lfllp <1} ={a/beQ:pla, and p1tb}

IS its unique maximal ideal.



Using Lemma 1 we get:

Theorem 1. [Ostrowski] Every nontrivial ab-
solute value on Q is equivalent to exactly one
of the absolute values in the set

S P N EA N AT T

Hence the collection of all places of Q is in-
dexed by the set

{00,2,3,5,7,...}.

The collection of nontrivial absolute values on
Q satisfies:

Theorem 2. (The Product Formula in Q) If
B8 # 0 is a rational number then

1Bllos [T 118]lp = 1.
p

Alternatively, we have

109 [|Blloc + 3109 |8l = O.
p



Proof. Assume that 8 # 0 has the factoriza-
tion

3 = 4ow2(B)gwz(B)guws(B)7wr(B)

Then
1181, = [[p~*® = 18112,
p D

which proves the product formula for Q. [ ]

The Weil height of the rational number 8 # 0
IS the positive number

H(B) = max{1,||Blloc} | [ max{1,[|8llp},
p

and the (logarithmic) Weil height of 8 # 0 is
the nonnegative real number

h(8) = log H(B) = log™ ||Bllec + 3 log™ |18]1».
P
If 8=1r/s# 0 and gcd(r,s) = 1, then

h(r/s) = max{log ||r|lcc, 09 ||s][oc},



At each place u of Q the field Q is a metric
space with metric defined by

(o, 8) = |l = Bllu,

Here we can use u = oo or u = p, where p is a
prime number. We write Q. for the completion
of Q with respect to the metric induced by || ||«.
Then Qx = R is the field of real numbers, and
for each prime p the completion Qp is the field
of p-adic numbers. In both cases Q is a dense
subfield of Q.

Let Q, be an algebraic closure of the complete
field Q. For example, Qx = C. It turns out
that the absolute value || ||, on Q has a unique
extension to an absolute value on Q.. This
allows us to determine all the absolute values
(and so all the places) of an algebraic number
field k.



Let k/Q be a number field with global degree
d=[k:Q],

and v a place of k. Each absolute value from v
determines the same metric topology in k. We
write ky for the completion of k with respect
to the metric topology. It follows that k£ is a
dense subfield of the complete field k. For
example, Qoo = R, and for each prime number
p, Qp is the field of p-adic numbers.

If || ||v is an absolute value in the place v of k,
then || ||, restricted to Q must equal || ||, for a
unique place

u € {00,2,3,5,7,...},

such that || ||v restricted to Q is an absolute
value in w. In this case we write

vlu, or "v lies over u".

We also find that the completion k, is a finite
extension of the field Q,, and we write

dy = [kv : Qu].
for the local degree.
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Let o be an algebraic number, k = Q(«), and
d=[k:Q]. Let u be a place of Q. We wish to
determine ||a||v at places v of k such that v|u.

(i) Let a = a1,an,...,ay be the conjugates of
a in Qu, and write

d
ma(z) = ] (& — a;)

j=1
for the minimal polynomial in Q[x].

(ii) Factor mq(x) into irreducible polynomials

in Qulz]:

ma(z) = g1(x)g2(z) - -~ gj(z).
At this point we know there will be exactly
J places vy,vp,...,vy, of k such that v;|u.

(iii) To determine vy, factor gy(z) in Qulx]:
g1(z) = (@ —a)(z—az) - (z—ay).
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(iv) Recall that

Norm : Qu(a1)™ — QX
IS @ homomorphism such that

Norm(a1) = Norm(ap) = - --

= arop---ag

= (—1)"141(0).
(v) Now define ||all»; by

I
leflo; = [INorm(aa)[lu = [lg1(0)||u-

(vi) Some useful identities:

kyl — Qu(al) and [kvl Qu] — dvl — I]_

and

J J
Y lkv, Qu=> dv=) I;=[k:Q]=d
j=1 j=1

v|u
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Let u be a place of Q and v a place of k such
that v|lu. Then || ||y is an absolute value in v
which extends the “usual” absolute value || ||u
in u. We now define a second absolute value
| |» in the place v by

dy/d d
o= 115", or tog| v ==10g | [u,

where
The absolute values | |, are normailzed.

Theorem 3. (The Product Formula) Let o #
O be an algebraic number contained in k, then

(Y

Alternatively, we have

> "log|aly = 0.
(Y
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Proof: Using the previous notation, at each
place u of Q we have

J
Y dvlogllally = ) Ijlog|lally

v|u j=1
J
= > 1091g;(0) |l
j=1
= 10g ||ma(0)||u.

Now mq(0) is @ nonzero point in Q. Therefore
by the product formula in Q:

310 jal, = ;(zlog |a|v)

v|u

=d! ;(Z dy 109 ||a||v>

vl|u
=d =" log [[ma(0)||
u
= 0.

T his proves the product formula for each point
a#= 0 in k.
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Again let a #= 0 be an algebraic number con-
tained in k. We define the multiplicative Weil
height of a by

H(Oé) — H maX{l, |a|U}7
v
and the logarithmic Weil height of a by
h(a) = log™ |aly.
(9

Here the product and sum are over the set of
all places v of a number field £ that contains
«. It can be shown that H and h are well
defined because there value does not depend
on the choice of number field £ that contains
«. T herefore we have both

H:Q" - [1,0), and h:Q" — [0,00).

Some authors call these absolute heights.

15



Properties of the Weil height: Let r/s be
a rational number, ¢ a root of unity, and let
a # 0 and 8 # 0 be elements of Q°. Then

(i) h(a£p) <log2+ h(a) + h(B),
(i) h(aB) < h(a) + h(B),
(i) h(Ca) = h(e),
(iv) h(a™/%) = |r/s|och(e),
(v) h(r/s) = max{log |r|co, 109 |s|co},

(vi) h(a) = 0 if and only if « is a root of unity.
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Theorem 4. Let o« = 0 and B # 0 distinct
elements of a number field k, and let S be a
nonempty subset of places of k. Then we have

(20()H(B)) " < ] la - Bls < 2H(a)H(B).

vES

Proof: If v is an archimedean place of k then

o = Bllo < [leflo + [|B]lo
< 2max{||ellv, [ B}
< 2max{l, ||la|lv} max{1, |8}
and
o — Blo < 2%/ max{1, |aly} max{1, |8}
If v is non-archimedean we use the strong tri-
angle inequality and get
ja — Blo < max{1,|als} max{1,|B|v}
Recall that

> (dv/d) = 1.

v|oo
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It follows that
I loe—Blo <2 J] max{1,|als} max{1,|8]v}

vES vES
< 2H(a)H(B).

This proves the upper bound.

Let T be the complement of S in the set of
all places of k. If T is empty the theorem is
trivial. If T is not empty

[ le=8l ][] la=Blb=1

veES veT
by the product formula. Therefore

[T la=8lg* =11 le = Blo

veS veTl
< 2H(a)H(B)

by what we have already proved. This verifies
the lower bound.
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Let v+ # O be contained in a number field k.
Assume that

O<|vlp<1

for some place v of k. Then

00
o = Z ,yn!
n=1

IS an element of the completion k,. Let

N |
By = > ™
n=1

be a partial sum, which is obviously an alge-
braic number in k. Evidently

0

Z ,Yn!
n=N-+1
tends rapidly to O as N — oo. If o is alge-
braic it can be shown that the lower bound in
the previous inequality is false for large N. It

follows that « is transcendental.

W—BMUS

v

19



Some useful references:

E. Bombieri and W. Gubler, Heights in Dio-
phantine Geometry, Cambridge U. Press, 2006

W. Narkiewicz, Elementary and Analytic The-
ory of Algebraic Numbers, 3rd ed. Springer-
Verlag, 2010

A. Weil, Arithmetic on algebraic varieties, An-
nals of Math. 53, 412-444, (1951)

A. Weil, Basic Number Theory, Springer-Verlag,
1973

20



