Altered Scapular Orientation During Arm Elevation in Patients With Insidious Onset Neck Pain and Whiplash-Associated Disorder

The musculature attaching the shoulder girdle to the axial skeleton is primarily responsible for scapular orientation, as the sternoclavicular joint is the only bony ligament attachment of the shoulder girdle to the trunk. The coordination of the trapezius and serratus anterior muscles is important in controlling scapular orientation during postural function and may be influenced by the activity and extensibility of the levator scapulae, rhomboids, and pectorals, which may compromise the muscle balance.13,36,41 Biomechanical reasoning indicates that altered activity in these muscles, affecting scapular orientation, may induce detrimental load on the cervical spine.16,20 Increased tension in muscle, such as the levator scapulae through its attachment to the upper 4 cervical segments, may directly induce compressive, rotational, and shear forces on cervical motion segments. The upper trapezius also has the potential to produce tissue distortion through its superior attachment.5,15 Altered activity in the axioscapular muscles may, therefore, create or sustain symptomatic mechanical dysfunction in the cervical spine and increase the recurrence of neck pain.1,16,20 Altered activity in the axioscapular muscles and impairments in scapular orientation are considered to be important features in patients with cervical disorders.19,20 Current therapeutic guidelines for these patients include the analysis and correction of the function of the axioscapular muscles, scapular orientation with arms by the side, and during upper limb activities.18-20,35 The presence of pain in the neck area has been associated with altered activity in the scapular muscles.5,10,45 However, scapular dynamic stability has not been investigated in patients with cervical disorders, and, due to lack of research in this field, therapeutic guidelines intended to restore normal scapular function in these patients are based on the results of shoulder studies.19 It is considered that similar disturbances may be found in these patients, as in patients with shoulder disorders, but this has not been confirmed.19

During full arm elevation, the clavicle
Twenty-one participants with IONP (19 women and 2 men) and 23 participants with WAD (20 women and 3 men) were recruited at physical therapy clinics on a voluntary basis in the Reykjavik municipal area. A sample of convenience, consisting of 20 asymptomatic participants (17 women and 3 men), served as controls (Table 1). All participants were right-handed. The majority of those referred were women, and the men referred were more frequently excluded because of shoulder problems and history of an injury to the upper extremity (especially due to clavicle fractures). Therefore, our symptomatic samples included mostly women. The participants in the control group were selected to match the participants in the symptomatic groups, according to their height, weight, age, gender, and physical activity level. Physical activity level was assessed by asking whether the participants engaged in some kind of physical activity on a regular basis (sports, exercises, etc). If the answer was yes, the participant was asked what kind of physical activity and how many times per week.

Demographic information (height, weight, age, gender, and physical activity level) was collected. Disability was measured with the Neck Disability Index (NDI), which is a self-reporting instrument for the assessment of activities of daily living of individuals with neck pain. The index is considered to be a condition-specific disability rating instrument sensitive to the levels of sever-

METHODS

Participants

This study was approved by the Bioethics Committee of Landspitali University Hospital, and all participants signed a consent form. Because a difference may exist in impairment between patients with IONP and WAD, this study included 2 groups of patients: group 1, with IONP, and group 2, with WAD grade II following a motor vehicle accident. WAD grade II is described as neck complaint of pain, stiffness, or tenderness and musculoskeletal signs, which includes decreased range of motion and point tenderness.

Twenty-one participants with IONP (19 women and 2 men) and 23 participants with WAD (20 women and 3 men) were recruited at physical therapy clinics on a voluntary basis in the Reykjavik municipal area. A sample of convenience, consisting of 20 asymptomatic participants (17 women and 3 men), served as controls (Table 1). All participants were right-handed. The majority of those referred were women, and the men referred were more frequently excluded because of shoulder problems and history of an injury to the upper extremity (especially due to clavicle fractures). Therefore, our symptomatic samples included mostly women. The participants in the control group were selected to match the participants in the symptomatic groups, according to their height, weight, age, gender, and physical activity level. Physical activity level was assessed by asking whether the participants engaged in some kind of physical activity on a regular basis (sports, exercises, etc). If the answer was yes, the participant was asked what kind of physical activity and how many times per week.

Demographic information (height, weight, age, gender, and physical activity level) was collected. Disability was measured with the Neck Disability Index (NDI), which is a self-reporting instrument for the assessment of activities of daily living of individuals with neck pain. The index is considered to be a condition-specific disability rating instrument sensitive to the levels of sever-
ity of complaint. It consists of 10 items addressing functional activities, such as personal care, lifting, reading, working, driving, sleeping, and recreational activities, as well as pain intensity, concentration, and headache. There are 6 potential responses for each item, ranging from no disability (0) to total disability (5). The overall score (out of 50) is calculated by adding the responses of each individual item and multiplying by 2. The score is, therefore, presented as a percentage. A higher score indicates greater pain and disability. The interpretation intervals for scoring are as follows: 0 to 8 is no disability, 10 to 28 is mild disability, 30 to 48 is moderate disability, 50 to 68 is severe disability, above 68 is complete disability. Pain intensity was evaluated with a 10-cm visual analogue scale (VAS), anchored by “no pain” and “pain as bad as it can be.” The VAS was used to indicate the average intensity of neck pain experienced over the past 7 days.

Inclusion criteria for the pain groups were being 18 to 55 years of age, having a score of at least 10 on the NDI (range, 0-100), and having neck symptoms that had lasted more than 6 months. A score of below 10 on the NDI is scored as “no disability,” and symptoms that have lasted more than 6 months are considered chronic. Participants were allocated to 1 of the 3 following groups: group 1, patients with IONP with no history of any accident or whiplash injury; group 2, patients diagnosed with a WAD, who had no prior history of symptoms in the neck area before the motor vehicle accident; and group 3, the controls, who were 18 to 55 years of age and had neither cervical nor shoulder dysfunction. The cervical spine was examined by a physical therapist trained in manual therapy, to confirm the presence or absence of cervical segmental joint dysfunction in patients with neck pain and controls, respectively. The glenohumeral joints were examined for pain, restriction, and impingement signs. Exclusion criteria for all the groups were any known pathology or impairment in the shoulder joint, history of head injury or spinal fractures, systemic pathology, and serious psychological condition.

TABLE 2

Digitized Anatomical Landmarks

<table>
<thead>
<tr>
<th>Landmarks</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorax</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>Spino apparatus of seventh</td>
</tr>
<tr>
<td></td>
<td>cervical vertebra</td>
</tr>
<tr>
<td>T8</td>
<td>Spino apparatus of eighth</td>
</tr>
<tr>
<td></td>
<td>thoracic vertebra</td>
</tr>
<tr>
<td>L1</td>
<td>Deeper point of suprasternal</td>
</tr>
<tr>
<td>PX</td>
<td>Xiphoid process, most caudal</td>
</tr>
<tr>
<td></td>
<td>point of the sternum</td>
</tr>
<tr>
<td>Clavicle</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>Most ventral point of sternoclavicular</td>
</tr>
<tr>
<td>AC</td>
<td>Most dorsal point of acromioclavicular</td>
</tr>
<tr>
<td>Humeral</td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>Base of the spine of the scapula, the midpoint of the triangular surface on the medial border of the scapula in line with the scapular spine</td>
</tr>
<tr>
<td>AI</td>
<td>Inferior angle, most caudal point of the scapula</td>
</tr>
<tr>
<td>AA</td>
<td>Acromion most laterodorsal point of the scapula</td>
</tr>
<tr>
<td>EL</td>
<td>Most caudal point on lateral epicondyly</td>
</tr>
<tr>
<td>EM</td>
<td>Most caudal point on medial epicondyly</td>
</tr>
</tbody>
</table>

The current study utilized the definition of body segment and joint coordinate systems for the upper extremity proposed by the Standardization and Terminology Committee of the International Society of Biomechanics (ISB standard). The coordinate systems were defined using the proposed digitized anatomical landmarks (TABLE 2). The Euler angle sequences from the ISB standard were applied for all motion descriptions, except for clavicle axial rotation, which was set at 0°.

The digitizing stylus connected to the magnetic tracking device was used to digitize the coordinates of these landmarks. All landmarks were palpable, except for the center of glenohumeral rotation (GH). The GH was estimated by moving the humerus through short arcs (<45°) of midrange glenohumeral motion. The GH was defined as the point on the humerus that moved the least with respect to the scapula when the humerus was moved and was calculated using a least-squares algorithm. Based on standard matrix transformation methods, the global axes defined by the sensors of the Fastrak device were converted to anatomically defined axes derived from the digitized bony landmarks.

Experimental Procedure The anatomical landmarks were palpated and marked. Three Fastrak sensors were attached to each participant. Using an adhesive tape, the first sensor was attached to the skin of the sternum (distal to the sternal notch), and the second sensor to
the flat part of the acromion. The second sensor evaluated the clavicle and scapular rotations. The third sensor, attached to an elastic strap (Mylatex wrap, 45 cm; Chattanooga Group, Chattanooga, TN), was placed distally on the posterior aspect of the humerus proximal to the epicondyles. These placements have been used previously and validated for these measurements by comparing surface sensor measurement to sensor fixed to pins drilled directly in the scapula. The average root-mean-square error for clavicle and scapular rotations was within 3°, between 30° and 120° of arm elevation in the scapular plane.

The participant was instructed to sit in a comfortable upright position, so that the sacrum was in contact with the back of the chair, with feet placed parallel on the floor (FIGURE 2). A flat, vertical surface was positioned along the lateral aspect of the participant’s arm to act as a guide to maintain scapular plane, defined as being 30° anterior to the frontal plane. The back of the hand gently contacted the vertical surface. With a metronome set at 60 beats per minute, each participant performed an arm elevation to a count of 3 seconds and a lowering along the same path to a count of 3 seconds, in a continuous movement. Before and between each elevation and lowering of the arm, the participant was instructed to relax the arms to assume the position they would normally assume by the side.” The participant was instructed to maintain this position throughout the digitization and the GH estimation procedure. Following this, the raw data from the sensors were converted into anatomically defined rotations.

Kinematic data were collected during 2 elevations of each arm. The order of testing was randomized. As both arms were tested, the Fastrak sensors on the scapula and the arm had to be moved to the opposite side when testing was completed on 1 side.

FIGURE 2. Experimental setup. A sensor was attached to the skin of the sternum, to the flat part of the acromion and on the posterior aspect of the humerus. The EMG surface electrodes on the subject were not utilized in this study.

Data Analysis
The main parameter of interest was scapular orientation during arm elevation in the scapular plane. The kinematic data for scapular orientation was described using 2 clavicle rotations (elevation/depression and protraction/retraction) and 3 scapular rotations (posterior tilt, upward/downward rotation, and internal/external rotation) as dependant variables, measured with the sensor located on the scapula (FIGURE 1). A software program (KINE, Hafnarfjorður, Iceland) calculated the scapular orientation of each clavicle and scapular rotation at 30°, 60°, 90°, and 120° of arm elevation. Interpolation was used to retrieve these data. The data were averaged for the 2 repetitions of humeral elevation for each participant.

SPSS Version 18 (SPSS Inc, Chicago, IL) was used for statistical analysis. The age, weight, and height among the 3 groups were compared by analysis of variance (ANOVA). For each group, the mean and standard errors were calculated for the dependant variables of scapular orientation bilaterally. All data satisfied normality assumptions, and parametric tests were subsequently used in all analyses. To compare scapular orientation among the 3 groups, a mixed-model, 3-way ANOVA was used, with 1 between-individual factor (group [IONP, WAD, and controls]) and 2 within-individual factors (side [arm dominance] and angle [30°, 60°, 90°, and 120° of humeral elevation]). Full factorial model was used. In the presence of an interaction, differences were tested at each level of the interacting variable. The significance level for all tests was set at .05.

Pearson correlation between the dependant variables and the scores on the NDI and the VAS were also assessed. Based on the large number of correlations, a threshold of .5 was established as a meaningful correlation.

RESULTS

There was no significant difference in age, weight, and height among the 3 groups (TABLE 1). Summary kinematic group data are illustrated in TABLE 3, and FIGURES 3, 4, and 5. Based on visual inspection of the graphs, the general pattern in the 3 groups during arm elevation was for the clavicle to elevate and retract, and the scapula to upwardly rotate and posterior tilt. The scapula also internally rotated until the arm had been elevated up to 90°, then externally rotated until the arm reached 120°.

For clavicle elevation, there was a main effect of side (F 1,125 = 4.437, P < .05) due to a 1.7° (SD, 0.8°) overall greater clavicle elevation of the nondominant side compared to the dominant side. There was also an angle-by-group interaction (F 1,322,104.07 = 3.708, P = .01), and group differences were, therefore, assessed for each angle. Post hoc comparisons revealed a significantly greater clavicle elevation in the WAD group compared to the asymptomatic group at the
90° angle (*P*<.05) and compared to both the IONP group (*P*<.05) and the asymptomatic group (*P*<.01) at the 120° angle. No significant difference was observed at any angle between the IONP group and the asymptomatic group (FIGURE 3).

For clavicle retraction, there was a significant angle-by-side interaction, whereby the participants responded differently for sides (*F*_{1,236,48,366} = 14.875, *P*<.05). Post hoc comparison revealed significant differences between the dominant and the nondominant side at 30° (*P*<.01), 60° (*P*<.01), and 90° (*P*<.01) angles, where a reduced clavicle retraction was observed on the dominant side compared with the nondominant side. However, there was no significant difference at 120° (*P* = .2). The main effects for groups were not significant (*F*_{2,61} = 2.742, *P* = .07) (FIGURE 4).

For scapular tilt, the groups responded differently for sides (*F*_{2,61} = 4.492, *P* = .01). Group differences, therefore, were assessed for each side. Post hoc comparisons revealed no significant differences between the asymptomatic groups and the symptomatic groups on either side, but a significant overall difference was observed between the 2 symptomatic groups on the nondominant side (*P*<.05), where the WAD group demonstrated lesser scapular posterior tilt than the IONP group (FIGURE 5). Whereas the control group demonstrated no interlimb differences (*P* = .56), the IONP group demonstrated a 3.5° greater scapular posterior tilt on the nondominant side (*P*<.01). Conversely, the WAD group scapular posterior tilt was greater by 3.5° on the dominant side, although this did not reach statistical significance (*P* = .06).

There were no group main effects or interaction effects for scapular upward rotation and internal rotation. The correlation between scapular tilt on the nondominant side in the WAD group and the scores on the NDI and VAS were .36 and .49, respectively. The correlation between the other dependant variables and the scores on the NDI and VAS was below .30 in both symptomatic groups.

DISCUSSION

The results of this study support our hypothesis and suggest a different scapular orientation in patients with cervical disorders compared to asymptomatic people, during dynamic arm movement. The results further suggest that individuals with neck pain have an altered dynamic stability of the scapula, the presentation of which may, in part, relate to their diagnoses.

A significantly reduced clavicle retraction was demonstrated in the symptomatic groups and the asymptomatic group on the dominant side compared to the nondominant side at the 30°, 60°, and 90° angles but not at the 120° angle. The WAD group demonstrated increased elevation of the clavicle compared to the asymptomatic group and the IONP group. A different finding was demonstrated between the symptomatic groups in clavicle elevation and left scapular tilt, suggesting that a difference may exist between the nature of the impairments between...
these groups of patients. The impairments demonstrated in the WAD group are similar to those reported in patients with shoulder problems.17,30,31,34 For clavicle retraction, an interaction was demonstrated with side and angle (FIGURE 4). This finding corresponds to former studies in which clavicle retraction was typically reduced on the dominant side compared to the nondominant side.49 This may be related to more use of the dominant arm compared to the nondominant arm and may reflect short overactive pectoral muscles and inefficiency in the trapezius muscle to retract the scapula and resist the activity of the serratus anterior. The middle trapezius is the main retractor, but the transverse-orientated fibers of upper and lower trapezius assist the action.17,50 Reduced extensibility and overactivity in the pectoralis minor through attachment to the coracoid process, and the pectoralis major through attachment to the humerus, may influence the retraction of the clavicle.42

A different finding was revealed between the symptomatic groups in clavicle elevation and left scapular posterior tilt. The WAD group demonstrated an increased clavicle elevation and decreased left scapular posterior tilt compared to the IONP group. It has recently been suggested that clavicle elevation may be coupled with scapular anterior tilt where increased elevation of the clavicle is coupled with increased anterior tilting of the scapula.47 This abnormality may reflect inefficiency in the action of the serratus anterior and lower trapezius, failing to generate normal posterior tilt and prevent excessive elevation of the scapula.27,30,41 The contribution of the middle trapezius may also be important to reduce clavicle elevation, as it has been demonstrated that a voluntary reduction of the upper trapezius activity, when the arm is elevated, increases mainly the activity of the rhomboids, the middle trapezius, and the serratus anterior.40 The reduced posterior tilt is considered to be associated with short overactive pectoralis minor.41 However, increased activity in the levator scapulae and the rhomboid muscles35 may explain the increased scapular posterior tilt observed in the IONP group (FIGURE 5).

A difference in the activity of the upper trapezius has been found between patients with WAD and IONP, where patients with WAD had a tendency for higher and longer muscle activation patterns of the trapezius during upper limb tasks,27 reduced ability to relax after tasks,32 and significantly higher EMG amplitude in the muscle compared to patients with IONP.20 However, reduced activity has been observed in the upper trapezius in patients with acute WAD (within 6 months from injury) during upper limb tasks. It has been suggested that the difference between patients with acute and chronic WAD may be explained by a greater level of pain and disability in the patients with chronic WAD.28

Interestingly, a different finding has been reported between patients with shoulder problems, in which patients with instability demonstrated less-elevated shoulders and patients with impingement syndrome more elevated shoulders on the symptomatic side compared to the asymptomatic side.30 This difference in the scapular tilt between the symptomatic groups observed only on the nondominant side cannot be related to increased symptoms on that side, as the majority of the patients who participated had bilateral symptoms in the neck area. This finding may, however, be related to decreased proprioception around the shoulders, which has been reported in patients with WAD,42 in association with less awareness and use of the nondominant arm compared to the dominant arm. Interestingly, EMG amplitude has been reported to increase in the left upper trapezius but decrease in the right trapezius during repetitive upper limb tasks in patients with cervical disorders compared to asymptomatic people.35

It has been argued that the presence of pain in the neck area may lead to altered activity in the scapular muscles, due to changes in the feed-forward response of the nervous system or selective reflexive inhibition.43 This altered activity may
The results of this study suggest that altered dynamic stability of the scapula may be present in patients with cervical disorders and demonstrate a difference in the impairments between patients with IONP and WAD. The results suggest that similar impairments may be found in patients with WAD, as in patients with shoulder disorders, but imply that patients with IONP may have different impairments than those previously reported.

Further studies are needed to provide information concerning the contribution of the scapular muscles in maintaining normal scapular orientation, with arms by the side and during arm elevation, in patients with cervical disorders. Information is needed to determine if the upper trapezius demonstrates proportionally reduced activity when the arms are by the side in patients with IONP, compared to asymptomatic people, and proportionally increased activity when the arm is elevated or if the activity is also low during arm elevation and the contribution of levator scapulae and the rhomboid muscles is increased. Fine-wire electrodes measuring the activity of the levator scapulae and the rhomboid muscles, with surface EMG to measure the activity of the trapezius and the serratus anterior, may be an important mechanism for maintenance, recurrence, or exacerbation of symptoms in these patients.

CONCLUSION

A significantly reduced clavicle retraction was demonstrated in the symptomatic groups and the asymptomatic group, on the dominant side compared to the nondominant side, at the 30°, 60°, and 90° angles but not the 120° angle. The WAD group demonstrated an increased elevation of the clavicle, compared to the asymptomatic group and the IONP group, and reduced scapular posterior tilt on the nondominant side compared to the IONP group. This finding suggests that a difference may exist between the nature of the impairments between these groups of patients. The altered scapular orientation observed in this study suggests that an altered dynamic stability of the scapula may be an important mechanism for maintenance, recurrence, or exacerbation of symptoms in these patients.

KEY POINTS

FINDINGS: In arm elevation, a reduced retraction of the clavicle is observed on the dominant side compared to the nondominant side in individuals with neck pain and asymptomatic individuals. Individuals with neck pain following a motor vehicle accident have increased clavicle elevation compared to people with no pain and people with neck pain and no history of a motor vehicle accident. They also have reduced scapular posterior tilt on the nondominant side compared to people with neck pain and no history of motor vehicle accident.

IMPLICATION: People with whiplash-associated disorder have impairments similar to those with shoulder pain.

People with neck pain and no history of a motor vehicle accident demonstrate different impairments.

CAUTION: A high level of variability is observed among individuals. Therefore, these findings may not be generalized to all patients with neck pain.

ACKNOWLEDGEMENTS: The authors wish to thank fellow colleagues who assisted in the recruitment of participants, the Faculty of the Department of Physiotherapy and Research Centre of Movement Science, and the faculty at KINE for their contribution concerning the technical part of the study.

REFERENCES

10. Falla D, Bilenki G, Juli G. Patients with chronic neck pain demonstrate altered patterns of