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A dramatic change in atmospheric composition has been postulated because of global carbon cycle disruption
during the Cretaceous (K)–Tertiary (T) transition following the Chicxulub impact and Deccan Trap eruptions.
Here, pedogenic carbonateswere collected fromdrill core of a borehole (SK-1 (N)) straddling the Late Cretaceous
and early Paleocene strata in the Songliao Basin, northeast China, to reconstruct atmospheric CO2 concentrations
using a paleosol paleobarometer. Our estimates for atmospheric pCO2 from paleosol carbonates range between
277±115 ppmv and 837±164 ppmv between 67.8 Ma and 63.1 Ma. One large (~66–65.5 Ma) and several
small CO2 spikes (~64.7–~64.2 Ma) during the latest Maastrichtian to earliest Danian are reported here and in-
corporatedwith previously published pCO2 estimates also estimated from paleosol carbonates. These CO2 spikes
are attributed to one-million-year-long emplacement of the large Deccan flood basalts along with the extrater-
restrial impact at the K–T boundary.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The K–T boundary was marked by one of the largest mass extinc-
tions during the past 500 million years (Peters, 2008), and several
hypotheses have been proposed to explain the mass extinction at the
K–T boundary. The impact hypothesis was introduced to account for
the mass extinction (Alvarez et al., 1980), and increasing numbers of
scientists attribute the mass extinction to the Chicxulub impact event
(Hildebrand et al., 1991; Kring, 2007; MacLeod et al., 2007; Miller et
al., 2010; Schulte et al., 2010). Global environmental consequences of
the impact included release of large quantities of water, dust, and
climate-forcing sulfuric and nitric acidic gases (Retallack, 1996), exten-
sive combustion of biomass or fossil organic matter (Wolbach et al.,
1988; Melosh et al., 1990; Ivany and Salawitch, 1993; Jones and Lim,
2000; Belcher et al., 2009), andmega-tsunami and ejecta debris deposi-
tion (Claeys et al., 2002). Alternatively, a continental flood basalt hy-
pothesis has also been used to explain the K–T mass extinction
pattern, due to abrupt global cooling resulting from the voluminous re-
lease of sulfur dioxide and dust into the atmosphere for single eruptive
events in the Deccan flood basalt traps (Keller et al., 2008; Chenet et al.,
2009; Courtillot and Fluteau, 2010), or to later greenhouse warming
with increase of atmospheric CO2 once dust, soot and aerosols fell to

the ground (Duncan and Pyle, 1988; O'Keefe and Ahrens, 1989;
Crowley and Berner, 2001). In addition, multicausal models including
impact, volcanic activity, marine regression, and changes in global and
regional climatic patterns have been linked to the extinction event
(Keller, 2001; Keller et al., 2003, 2009; MacLeod, 2003; Archibald et
al., 2010; Keller et al., 2010).

A significant perturbation of the global carbon cycle has been pre-
dicted from extinctions themselves, aswell as from impact and volcanic
eruption near the K–T boundary. It was hypothesized that atmospheric
CO2 would rise dramatically across the K–T transition due to massive
amounts of CO2 from Chicxulub's target carbonate-rich lithologies and
the projectile (O'Keefe and Ahrens, 1989; Agrinier et al., 2001; Kring,
2007), from widespread large wildfires (Melosh et al., 1990; Wolbach
et al., 1990; Ivany and Salawitch, 1993;Durda andKring, 2004), from in-
truded or impacted coal or hydrocarbons (Belcher et al., 2005;Harvey et
al., 2008; Belcher et al., 2009), from reduction in worldwidemarine pri-
mary productivity (D'Hondt et al., 1998; Aberhan et al., 2007; Maruoka
et al., 2007), and fromdegassing ofmantle volatiles during several short
eruptions of theDeccan Traps (Courtillot et al., 1986; Officer et al., 1987;
Self et al., 2006; Kring, 2007; Chenet et al., 2009).

Estimated atmospheric CO2 concentrations across the K–T transition
are tests of these hypotheses. An abrupt pCO2 fluctuation at the K–T
boundary has been examined using both stomatal index of fossil plants
(Beerling et al., 2002; Retallack, 2009a) and a paleosol barometer
(Nordt et al., 2002, 2003). However, disparity between magnitude and

Palaeogeography, Palaeoclimatology, Palaeoecology 385 (2013) 95–105

⁎ Corresponding author.
E-mail address: cmhuangscu@gmail.com (C. Huang).

0031-0182/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.palaeo.2013.01.005

Contents lists available at SciVerse ScienceDirect

Palaeogeography, Palaeoclimatology, Palaeoecology

j ourna l homepage: www.e lsev ie r .com/ locate /pa laeo



Author's personal copy

duration of CO2 concentration in these studies highlights the need for
more records with greater precision and temporal resolution (Arens
and Jahren, 2002; Retallack, 2004). In the past, lack of information
about key parameters such as soil respiration for the pedogenic CO2

paleobarometer of Cerling (1991) have limited their precision in deter-
mining ancient CO2 levels, but now a variety of proxies for soil respira-
tion are available (Retallack, 2009b; Breecker et al., 2010; Royer, 2010;
Cotton and Sheldon, 2012).

The Songliao Basin of China has thick sequences of Jurassic–Paleogene
terrestrial strata (Wan et al., 2007), including carbonate-nodule-bearing
paleosols suitable for determination of paleoatmospheric CO2 (Huang et
al., 2010). Our study uses selected carbonate paleosols in northeast
China in order to: (1) estimate atmospheric pCO2 levels across the K–T
boundary using a paleosol CO2 paleobarometer and supplement the
global database of CO2 concentrations; and (2) indicate the source(s)
for the change in pCO2, if any.

2. Geological setting

Within one of the largest Cretaceous landmasses (Scotese et al., 1988),
the Songliao Basin in northeast China covers an area of ~260,000 km2

(Fig. 1). The basin is filled predominantly with volcaniclastic, alluvial
fan, fluvial, and lacustrine sediments of Late Jurassic, Cretaceous, and
Paleogene ages on a pre-Mesozoic basement (Wang et al., 2009). Meso-
zoic and Cenozoic terrestrial strata are up to 7000 m thick above the
basement unconformity (Gao et al., 1994; Wu et al., 2009).

A scientific borehole (SK-1 (N)) was drilled in 2007 that covered the
complete Upper Cretaceous to Paleocene section in the basin in a total
depth of 1541.66 m. TheUpperMingshui Formation of latest Cretaceous
and earliest Paleogene (Maastrichtian–Paleocene) ages is composed
of variegated sandstone and gray-green mudstone intercalated with
brown mudstone (Wang et al., 2008).

Although lacking a diagnostic boundary claystone, iridium anomaly,
glass spherules and shockedminerals, the K–T boundary is recognizable
palynologically (Chen et al., 2004; Kring, 2007; Therrien et al., 2007), by
extinction of some key taxa, e.g., aquilapollens (Nichols, 1990; Braman
and Sweet, 1999; Sweet and Braman, 2001; Chen et al., 2004; Liu et
al., 2009). Here, the K–T boundary in the Songliao Basin from the Drill
SK-1 (N) was interpolated at depth of 360.6 m (±10 m) below the
surface, because 51 species of spores, gymnosperm pollen, angiosperm

pollen (Normapolles and Aquilapolles) disappeared above this depth, in
contrast with the strata below the depth (Li et al., 2011). This is
supported from the Baitoushan section, in the Jiayon Bain, also located
in Helongjiang, NE China, where the base of coal-bearing Wuyun For-
mation and the top of the Furao Formation coincide with nonmarine
K–T boundary based on biostratigraphic analysis (Chen et al., 2004;
Liu et al., 2009). About 10 species of Aquilapolles are observed to indicate
late Maastrichtian age of Furao Formation (Chen et al., 2004), and a
SHRIMP U–Pb zircon age of rhyolitic crystal tuff, ~9.3 m below the top
of the Furao Formation strata is 66±1 Ma, only 0.5 Ma older than the
recommended K–T boundary age in the International Stratigraphic
Chart (Li et al., 2004). However, the K–T boundary should be close to
the depth of 360.6 m given that paucity of pollen and spores within ap-
proximate 100 m of section within 360.6 m to 263.4 m (Li et al., 2011;
Deng et al., 2013). The geomagnetic polarity timescale for the borehole
(SK-1 (N)) was determined by combining magnetostratigraphy, SIMS
U–Pb zircon geochronology and lithostratigraphy, and the top of
chron 30n in the GPTS (Cande and Kent, 1995) was put at the depth
of 342.1 m (Deng et al., 2013). Accordingly, the K–T boundary is esti-
mated at ~340 m in depth of this borehole in NE China.

3. Methods

3.1. Sample collection and analytical methods

Paleosol carbonate samples were collected from 23 paleosol Bk
horizons within the Upper Mingshui Formation (late Maastrichtian–
early Paleocene) in the Drill SK-1 (N) at depths between 267.6 m
and 480.4 m below the surface (Fig. 2). On a basis of the age of
65.58 Ma for the deposition at the depth of 342.1 m (Deng et al.,
2013), the age of the paleosol horizons (A, Ma) for this section were
extrapolated from sediment accumulation rate and the depth of the
paleosol horizons (D, m) while the sedimentation accumulation rate
(S, m/Ma) for the Upper Mingshui Formation was assumed as 30 m/Ma,
60 m/Ma respectively at the depth of less than 342.1 m, between
342.1 m and 530.78 m in combination with paleomagnetic analysis
(Deng et al., 2013) (Eq. (1)).

A ¼ 65:58þ D−342:1
S

: ð1Þ
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Fig. 1. Geographical position of the SK-1 (N) borehole in the Songliao Basin, northeast China.
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Three samples of pedogenic carbonate nodules from each Bk hori-
zon were sampled for stable carbon and oxygen isotopic compositions
of pedogenic carbonates. ~5 mg of the micritic carbonate was sam-
pled. These samples were reacted in vacuum with 100% phosphoric
acid for at least 4 h at 25 °C, and the resulting CO2 analyzed for carbon
and oxygen isotopes with a Finnigan MAT 253 mass spectrometer at
State Key Laboratory of Lithospheric Evolution, Institute of Geology
and Geophysics, Chinese Academy of Sciences. The three isotopic
values of separated pedogenic nodules for each Bk horizon were aver-
aged to determine intranodule variability. The results are expressed in
the notation δ‰ (per mil) relative to Peedee belemnite (PDB). Repro-
ducibility of both δ18O and δ13C on standards and unknowns is within
±0.2‰.

3.2. Assumptions for atmospheric CO2 estimation

The pedogenic carbonate CO2 paleobarometer was used for esti-
mates of atmospheric CO2 concentrations (Cerling, 1999; Ekart et
al., 1999):

Pa ¼ Pr⋅
δ13Cs−1:0044δ13Cr−4:4

� �
δ13Ca−δ13Cs
� � ð2Þ

where Pa is atmospheric CO2 (ppmv), Pr is soil-respired CO2 concen-
tration (ppmv) and δ13Cs, δ13Cr and δ13Ca are the stable carbon isoto-
pic compositions of soil CO2, soil-respired CO2, and atmospheric CO2,
respectively. Variables in this equation are guessed from the follow-
ing analyses and transfer functions.

The isotopic compositions of respired soil CO2 (δ13Cr) is approxi-
mated by the δ13C of paleosol organic carbon (δ13Co) (Cerling, 1991),
accordingly, δ13Co can be substituted for δ13Cr in the model equation
(Cerling, 1999). Considering the striking fractionation of carbon isotopic
composition induced by aerobic decomposition after burial of soils
(Ekart et al., 1999; Wynn, 2007), in addition to low levels of paleosol
organic carbon, the isotopic compositions of well-preserved fossil ter-
restrial plants may also be used as a proxy of δ13Cr instead of δ13Co
(Robinson et al., 2002; Cleveland et al., 2008a). In cases such as this,
where insufficient fossil wood was found in each paleosol, an alterna-
tive protocol is to estimate the δ13C of atmospheric CO2 (δ13Ca) through
geological time from δ13C of planktic foraminifera from high resolution
marine sediments (Passey et al., 2002; Nordt et al., 2003; Retallack,
2009b), and δ13Co was calculated using Eq. (3) from Arens et al. (2000).

δ13Ca ¼
δ13Co þ 18:67

1:1
: ð3Þ

A five-point running average of the δ13C values of planktic forami-
nifera were selected for δ13Ca estimation within 67.8 Ma and 64.9 Ma
from Deep Sea Drilling Project (DSDP) core 525A from the South
Atlantic (Li and Keller, 1998) and within 64.8 Ma and 63.1 Ma from
DSDP 577 from the North Pacific (Shackleton and Bleil, 1985; Zachos
et al., 1989; Nordt et al., 2003), and−7.9‰was assumed as the isotopic
equilibrium fractionation value between ocean and atmospheric CO2

(Passey et al., 2002). An assumed a value of −24.0‰ for δ13Ca at
66.8 Ma calculated from δ13C values of planktic foraminifera of DSDP
525A is in good agreementwith an average value of ~−24.2‰ (ranging
from −24.18‰ to −24.35‰) of terrestrial fossil plants from Sakhalin,
Russian Far East (Hasegawa et al., 2003), in the neighborhood of the
Songliao Basin, northeast China. The paleomagnetic ages of strata for
δ13Ca estimation from DSDP 525A and DSDP 577 were estimated fol-
lowing Cande and Kent (1995). The δ13Ca estimated from planktic fora-
minifera was adopted for the paleosols at the identical ages inferred
from the sedimentation rates.

Two approaches have been currently used to estimate paleo-
temperature in paleosol formation (Dworkin et al., 2005). One approach
derives from the statistical relationship between alkaline index (N=
(K2O+Na2O)/Al2O3, as a molar ratio) to indicate the degree of soil
weathering and mean annual temperature (Sheldon et al., 2002), how-
ever, this quantification is problematic for soils formed under arid and
semiarid climate because N value is unaltered or may increase with
the temperature due to evaporative enrichment of Na and K within
this kind of soils (Pan and Huang, 2012). Here, the isotopic composition
of soil CO2 (δ13Cs) comes from that of pedogenic carbonate (δ13Cc),
corrected for temperature (T in °C) dependent fractionation from
Eq. (4) (Romanek et al., 1992). We use isotopic composition of oxygen
in pedogenic carbonate (δ18Oc) relation formodern climates to estimate
temperatures, despite known diagenetic effects on oxygen isotopic
composition of pedogenic carbonate after burial and potential evapora-
tive enrichment effects under arid climates (Cerling, 1984; Quade et al.,
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Fig. 2. Lithostratigraphic columnar section and sample horizons of the Mingshui
Formation across the K–T boundary from the SK-1 (N) borehole in the Songliao Basin,
northeast China.

97C. Huang et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 385 (2013) 95–105



Author's personal copy

1989; Cerling and Quade, 1993; Mack and Cole, 2005; Tabor and
Montañez, 2005). These diaganetic alterations are considered minimal
because of the shallow burial depth of paleosols (b0.5 km) and limited
diagenetic alteration reflected by pedogenic features (Nordt et al., 2003;
Dworkin et al., 2005; Prochnow et al., 2006; Huang et al., 2010). In ad-
dition, because the Eq. (5)was derived frommodern pedogenic carbon-
ates that likely experienced some degree of evaporative enrichment
(e.g., Dworkin et al., 2005), it is unnecessary to assume the total absence
of evaporation (Cleveland et al., 2008a).

δ13Cs ¼
δ13Cc þ 1000

11:98−0:12⋅T
1000

þ 1
−1000 ð4Þ

T ¼ δ18OC þ 12:65
0:49

: ð5Þ

Partial pressure of respired CO2 in soil (Pr in ppmv) depends domi-
nantly on atmospheric CO2 and CO2 from respiration of roots, animals
and microbes. Much higher paleo-atmospheric CO2 concentrations esti-
mated previously from the soil carbonate CO2 paleobarometer than
those fromother paleo-pCO2 proxies, e.g., stomatal index of fossil plants,
was newly attributed to overestimation of Pr (Breecker et al., 2010;
Royer, 2010). However, a proposed Pr value of 2500 ppmv for all
paleosols was oversimplified (Breecker et al., 2010; Royer, 2010). For
the highly significant relationship between respired soil CO2 during
late growing season and depth to Bk horizon, Retallack (2009b)
established a novel transfer function between Pr and depth to carbonate,
and Eq. (6)might be a better solution to reconstruct the partial pressure
of respired soil CO2 (Royer, 2010). Another relationship between sum-
mer minimum soil-respired CO2 and mean annual precipitation has
been proposed for the soils containing pedogenic carbonates (Cotton
and Sheldon, 2012) using a correlation of soil productivity with precip-
itation. This relationship was not used for the following three reasons.
First, estimation of Pr, using the scheme of Cotton and Sheldon (2012)
results in large Pr errors envelopes once errors of paleoprecipitation
are compounded with errors in correlation of Pr and precipitation. Sec-
ond, Cotton and Sheldon (2012) are mistaken in their statement that
Retallack (2009a) used mean growing season Pr. Third, use of the very
lowest summer Pr values by Cotton and Sheldon (2012) gives nearmod-
ern concentrations (375–454 ppm) for middle Miocene pCO2 when
applied to data of Retallack (2009b), which is too low to account for ob-
servedwarmer andwetterMiocenepaleoclimate (Retallack, 2009a). For
compaction in paleosols, Dc was corrected using Eq. (6) in modern soils
(Sheldon and Retallack, 2001).

Pr ¼ 66:7Dc þ 588 ð6Þ

Dc ¼ Dp= −0:62=
0:38
e0:17K

−1
� �� 	

ð7Þ

whereDc (in cm),Dp (in cm) and K (in km) are original depth to carbon-
ate nodules, depth to carbonate nodules in paleosol, and burial depth,
respectively.

4. Pedogenic carbonate nodules

In most calcareous paleosols, the calcic horizon (Bk horizon) was
reddened by dehydration and recrystallization of iron hydroxides to he-
matite (Fig. 3A,B) (Retallack, 1997, 2001; Budd et al., 2002), but some
paleosols are gray in color (Fig. 3C), with little difference in color be-
tween upper and lower horizons. In terms of the morphological classi-
fication of calcretes (Goudie, 1983; Quast et al., 2006), the collected
calcretes mainly appeared in forms of well-rounded to sub-rounded
nodular with a diameter of 0.1–3.5 cm (Fig. 3A–F).

Micrite dominatesmicrofabric in the carbonate nodules (Fig. 4A–D),
and sparry calcite is constrained to the cracks (Fig. 4B), as is character-
istic of pedogenic carbonate (Budd et al., 2002; Deutz et al., 2002;
Dworkin et al., 2005; Cleveland et al., 2008b). Micritic aggregates in
larger nodules have circumgranular cracks cemented by microsparite
(Fig. 4C), as also known from paleosols elsewhere (Kovda et al., 2003).
Displacive fabrics also are apparent where splinters of matrix have
rotated (Fig. 4D), and these indicate expansion due to soil formation
under low confining pressure.

5. Estimation of Cretaceous atmospheric CO2 concentrations
during the late Maastrichtian and the early Danian

Calculations of pCO2 values from paleosol carbonates from Drill
SK-1 (N) in China, range between 277 ppmv and 837 ppmv from
67.8 Ma through 63.1 Ma (Table 1), and are generally lower than the
estimates of the pCO2 range from ~400 ppm (ca. 1.4 present atmo-
spheric level (PAL)) up to ~1400 ppm (5.0 PAL) for the interval be-
tween 80 Ma and 60 Ma by geochemical and biogeochemical models
(Tajika, 1999; Berner and Kothavala, 2001; Wallmann, 2001; Berner,
2006; Fletcher et al., 2008). Also our estimates are lower than previous
values of pCO2 calculated from paleosol carbonates (Ekart et al., 1999;
Cojan et al., 2000; Nordt et al., 2002), largely because of assumptions
by those authors of 4000–6000 ppmv of Pr. If Pr is assumed to be
only 2500 ppmv as proposed by Breecker et al. (2010), their pCO2

values decrease to within the range of our estimates (Fig. 5). Also,
averaged pCO2 concentrations for our estimation, i.e., ~460 ppmv,
during the early Paleocene is comparable with 375–404 ppmv pCO2

estimated from fossil Ginkgo from Helongjiang, NE China (Quan et
al., 2010).

The standard errors for atmospheric CO2 estimates, derived from the
transfer functions (above-mentioned equations) and analytic error
limits, calculated from the transposed equations on a base of Gaussian
error propagation used by Retallack (2009b). The standard error of
the soil-respired CO2 transfer function (Eq. (5)) reaches ±893 ppmv
(Retallack, 2009b), and resulted in a variation within ±75 ppmv and
±269 ppmv of the maximal errors for atmospheric CO2 estimates.
The uncertainty from paleotemperature estimates is ±5.8 °C for
Eq. (4) producing a range of ±11 ppmv and ±51 ppmv atmospheric
CO2. An analytic error of ±0.3‰ of δ13Cr, ±0.2‰ of δ13Cc and ±0.4‰
of δ13Ca gives less than±0.1 ppmv atmospheric CO2. In general, the er-
rors for all atmospheric CO2 concentration estimate fluctuate between
±78 ppmv and ±271 ppmv using Gaussian quadrature (Table 1).
The ultimate errors for the mean atmospheric CO2 concentration at
each age range between ±79 ppmv and ±454 ppmv.

Using the paleosol barometer a pCO2 peak had been previously
discovered at 65.5 Ma (Nordt et al., 2002) or between 65.5 and
65.0 Ma (Nordt et al., 2003). An unusually high a peak of >2300 ppmv
CO2 at ~65 Ma was calculated from stomatal index of fossil ferns
(cf. Stenochlaena), but this plant model remains poorly understood
(Beerling et al., 2002). Another high value of 1689±430 ppmv atmo-
spheric CO2 was determined for ~65 Ma from 563 counts of a single
leaf of Gingko: such low numbers of leaves and counts are statistically
of low reliability (Retallack, 2009a). Discounting these extreme values
and combining re-calculated pCO2 data estimated fromother pedogenic
carbonates (Ekart et al., 1999; Cojan et al., 2000; Nordt et al., 2002), a
pCO2 curve spanning the Maastrichtian and Danian was composed to
examine atmospheric CO2 variation (Fig. 5). A large spike (~840 ppmv)
was detected at 66.0 Ma and several small spikes (~550–~600 ppmv)
at 64.7, 64.5 and 64.2 Ma, respectively.

The critical issue for identifying more spikes is the temporal reso-
lution of atmospheric pCO2 time series. Geochemical or biogeochem-
ical models provide pCO2 estimates for the entire Phanerozoic at time
scales of 5–10 Ma, and so reflect major trends, but not short-term ex-
cursions (Royer et al., 2001). Many dramatic fluctuations in pCO2 con-
centration occurred over short-time spans during geological time
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(Retallack, 2009b; Breecker et al., 2010). Atmospheric pCO2 variations
of over 100 ppmv in ~30 ka, were revealed from air trappedwithin ice
cores, largely because of interaction between ocean and atmosphere
(Fischer et al., 1999; Petit et al., 1999; Siegenthaler et al., 2005;
Lourantou et al., 2010). Four atmospheric pCO2 rises (>100 ppmv)
in the duration of b100 ka have been detected since 800 ka BP to the
present (Lüthi et al., 2008). In deep time, short-lived (b1 Ma) pCO2

excursions are common, and at least 20 pCO2 spikes have been recog-
nized over the past 300 million years using stomatal index (Retallack,
2009a).

6. Causes for elevated atmospheric CO2 concentrations

Low pCO2 level during mid-Maastrichtian (68.0–67.0 Ma) ranging
from 200 ppmv to 300 ppmv are compatible with evidence for a
mid-Maastrichtian cool event from variation in sea level and marine
δ18O records (Huber et al., 2002; Miller et al., 2003).

A period of relatively high pCO2 persisted for ~1.5 million years
(66.5 Ma and 65 Ma), and the atmospheric CO2 concentrations most-
ly exceeded 500 ppmv (Fig. 5). The high pCO2 level for ~1.5 Ma is in

phase with the Deccan eruptions at 67–66.5 Ma (Self et al., 2006;
Chenet et al., 2007; Self et al., 2008; Jay et al., 2009). Moreover, the
small CO2 spikes within 64–65 Ma (Fig. 5) is in agreement with the
third large eruption phase of the Deccan Traps (Chenet et al., 2007;
Bryan et al., 2010; Hooper et al., 2010).

The peak atmospheric CO2 level within ~66.0–~65.5 Ma may have
resulted from both the Deccan Trap eruptions and Chicxulub impact.
Self et al. (2006, 2008) estimated that over ~13,000 Gt CO2, was re-
leased from Deccan Traps emplacement during ~2 Ma, and the largest
emission of CO2 (~5000 Gt) also occurred over a short time-span
(66.0–65.5 Ma) (Fig. 5).With respect to the currentmass of atmospher-
ic CO2 (~3000 Gt), several single eruptive events spanning tens and
hundreds of years, a mass of ~300 Gt degassing during each single
eruptive event producing at least 40–80 ppmv in pCO2 increase, is con-
sistent with geochemical models of Caldeira and Rampino (1990) and
the calculation from global volcanic emissions for thousands of years
during the last deglaciation along with the current volcanic observa-
tions (Huybers and Langmuir, 2009). In contrast, Self et al. (2005) and
Chenet et al. (2009) found much lower pCO2 release from the Deccan
Traps. Though the lavas contained little CO2, vast amounts of CO2 may

Fig. 3. Photographs of paleosols and pedogenic nodules. A) Paleosols and Bk horizon (0971), pen for scale, ~17 cm in length; B) paleosols and Bk horizon (1220), coin for scale;
~2.5 cm in diameter; C) Bk horizon and pedogenic nodules (2940), coin for scale; ~2.5 cm in diameter; D) Bk horizon and pedogenic nodules (1410), coin for scale; ~2.5 cm in
diameter; and E and F) pedogenic nodules within Bk horizon (1320 and 1221, respectively), coin for scale; ~2.5 cm in diameter.
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have been produced by contact metamorphism surrounding intrusions
in carbonate rocks, coal or organic-rich shales (Ray et al., 2008; Ganino
and Arndt, 2009; Hegde and Chavadi, 2009).

Presumably the Chicxulub impact at ~65.6 Ma contributed greatly
to the input into the atmospheric CO2. CO2 produced from vaporized
carbonates increased atmospheric CO2 by a factor of 2 or more
even for over 105 years because of the impact onto the carbonate-rich

marine sedimentary terrace (O'Keefe and Ahrens, 1989; Beerling et al.,
2002). The maximum amount of CO2 was estimated at 100,000 Gt dur-
ing the impact event (Takata and Ahrens, 1994). This is an unbelievably
large amount, and is best regarded as a theoretical maximum, consider-
ing the complex kinetics and thermodynamics of the reactions during
the impact events (Agrinier et al., 2001; Ivanov et al., 2002). Subsequent
estimation from the numerical models and experiments, ranged from

Fig. 4. Micrites in the carbonate nodules. A) Micritic fabrics (1320); B) micritic fabrics and sparry calcites in the cracks (298); C) micritic aggregates and circumgranular cracks
cemented by microsparite (1350); and D) micrites and displacive fabrics (0971).

Table 1
Data used to estimate paleoatmospheric CO2 concentration across the K–T boundary from paleosols.

Age
(Ma)

Sample no. δ13Cc

(‰)
Dp

(cm)
K
(m)

Dc

(cm)
Pr
(ppmv)

δ13Cr

(‰)
δ13Oc

(‰)
T
(°C)

13Cs
(‰)

δ13Ca
(‰)

Pa
(ppmv)

MPa
(ppmv)

63.1 0971 −9.02 60 0.269 62 4700 −25.2 −8.21 9.1 −19.70 −5.90 399±79 399±79
63.2 0980 −8.86 35 0.270 36 2987 −25.2 −7.36 10.8 −19.34 −5.90 341±103 341±103
64.1 1221 −9.11 30 0.297 31 2649 −25.3 −7.70 10.1 −19.67 −6.05 267±91 326±91

1240 −8.93 50 0.299 52 4024 −25.3 −8.70 8.1 −19.73 −6.05 386±88
64.2 1260 −8.35 10 0.300 10 1275 −25.3 −7.71 10.1 −18.92 −6.05 210±148 456±159

1261 −8.05 40 0.301 41 3338 −25.3 −8.61 8.2 −18.83 −6.05 575±157
1262 −8.00 40 0.301 41 3338 −25.3 −8.72 8.0 −18.81 −6.05 582±159

64.4 1320 −9.22 40 0.307 41 3339 −25.3 −8.03 9.4 −19.85 −6.05 286±78 286±78
64.5 1350 −8.27 40 0.311 41 3340 −25.3 −7.58 10.3 −18.81 −6.05 584±159 584±159
64.6 1370 −8.48 60 0.312 62 4717 −25.3 −8.56 8.3 −19.25 −6.05 640±126 451±126

1381 −8.38 16 0.314 17 1689 −25.3 −8.02 9.4 −19.02 −6.050 263±140
64.7 1391 −7.14 20 0.315 21 1965 −25.4 −7.3 10.9 −17.62 −6.10 592±271 569±271

1400 −8.41 20 0.315 21 1965 −25.4 −7.41 10.7 −18.90 −6.10 336±154
1401 −8.06 20 0.315 21 1965 −25.4 −7.13 11.3 −18.49 −6.10 412±189
1410 −7.57 30 0.316 31 2653 −25.4 −8.59 8.3 −18.35 −6.10 593±202
1412 −8.12 60 0.316 62 4718 −25.4 −7.6 10.3 −18.66 −6.10 912±180

64.9 1460 −7.56 30 0.321 31 2654 −24.9 −8.6 8.3 −18.35 −5.65 470±160 470±160
66.0 1890 −6.95 60 0.366 62 4738 −24.4 −9 7.4 −17.84 −5.18 837±164 837±164
67.8 2940 −7.51 30 0.477 31 2685 −24.0 −9.52 6.4 −18.52 −4.81 225±76 277±115

2952 −7.07 20 0.478 21 1986 −24.0 −9.13 7.2 −17.99 −4.81 253±115
2953 −7.33 35 0.479 37 3034 −24.0 −9.31 6.8 −18.29 −4.81 310±93
2960 −7.38 40 0.479 42 3384 −24.0 −8.41 8.7 −18.12 −4.81 392±106
298 −7.17 26 0.480 27 2405 −24.0 −8.69 8.1 −17.98 −4.81 308±115

Note: The standard errors of Pa are calculated using Gaussian error propagation; MPa is the mean value of Pa at a certain age, and the standard errors of MPa are assigned to the
maximal Pa error at a certain age.
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~300 to >104 Gt for the mass of CO2 emission into the atmosphere
(Ivanov et al., 1996; Pope et al., 1997; Pierazzo et al., 1998; Kring and
Durda, 2001; Beerling et al., 2002), is one to two orders of magnitude
lower than that of Takata and Ahrens (1994). Despite disagreement
concerning the mass of liberated CO2, it is reasonable that the atmo-
spheric pCO2 level dramatically increased, due to vaporization of target
rocks of the Chicxulub impact (Beerling et al., 2002; Premović, 2009).

Extensivewildfires ignited by the ejecta (Wolbach et al., 1990; Kring
and Durda, 2002; Durda and Kring, 2004) or combustion of hydrocar-
bons during the impact event (Scott et al., 2000; Belcher et al., 2005;
Harvey et al., 2008; Belcher et al., 2009) could introduce large amounts
of CO2 into the atmosphere (Kring, 2003, 2007). Nevertheless, the con-
sequence of the impact-generated pulse of thermal radiation from these
sources remains uncertain (Belcher et al., 2003; Belcher, 2009; Goldin
and Melosh, 2009). Here we do not include the CO2 emissions from
above-mentioned processes, although ~104 Gt of CO2-roughly equiva-
lent to the mass of CO2 liberated from vaporized target sediments, had
been estimated (Kring and Durda, 2001; Kring, 2007).

In concert with themarkedly elevated atmospheric CO2 level, global
warming, sea level rise and deglaciation should occur after a period
of cooling resulting from the huge mass of dust and sulfate aerosols

ejected from the impact (Kring, 2007; Huybers and Langmuir, 2009).
Though the coupling of atmospheric CO2 concentrations and climate
change was suspected (Veizer et al., 2000; Kump, 2002; Shaviv and
Veizer, 2003; Donnadieu et al., 2006), ocean temperature estimated
from δ18O of foraminifera disagreed with atmospheric pCO2, perhaps
due to seawater pH effects (Zeebe, 2001; Royer et al., 2004). However,
other studies supported the hypothesis that global warmingwas driven
by increased atmospheric pCO2 level (Crowley and Berner, 2001;
Pearson et al., 2001; Retallack, 2002; Royer et al., 2004; Came et al.,
2007; Pucéat et al., 2007; Fletcher et al., 2008; Retallack, 2009a;
Solomon et al., 2009, 2010). After a Late Cretaceous cooling (Pucéat
et al., 2007), a global warming event occurred at the transition between
late Maastrichtian and early Danian consistent with the elevated pCO2,
supported from the isotopes of numerous global drilling sites (Zachos et
al., 1989; Li and Keller, 1998; Huber et al., 2002; Abramovich and Keller,
2003; Ravizza and Peucker-Ehrenbrink, 2003; MacLeod et al., 2005;
Westerhold et al., 2011), simulation models (Pierazzo et al., 1998;
Dessert et al., 2001; Hunter et al., 2008) and calcareous nannofossil
assemblages (Thibault and Gardin, 2010). The seawater temperature
estimates range from below 1 °C (Caldeira and Rampino, 1990), to
~2 °C (Pierazzo et al., 1998; Zachos et al., 2001; Huber et al., 2002),

This study Previous study (Ekart et al., 1999; Cojan et al., 2000; Nordt et al, 2002)
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Fig. 5. A) Estimation on CO2 mass erupted released from the Deccan traps, using a 0.5% mass fraction of CO2 in flood basalt magmas (Self et al., 2006; Chenet et al., 2008, 2009) and
the eruptive volumes and the age ranges of the main eruption phase after Self et al. (2006); B) an estimated atmospheric CO2 across the K–T boundary from this study and previous
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4 °C or higher (Dessert et al., 2001; Beerling et al., 2002; Wilf et al.,
2003).

A high-temporal-resolution curve of paleotemperature from the
δ18O of foraminifera in a duration corresponding to the K–T boundary
is only known from the South Atlantic (Cramer et al., 2009). The δ18O
of foraminifera varied coincidentlywith the fluctuations of atmospheric
CO2 levels, even the smaller-scale CO2 spike between 66 Ma and 67 Ma
(Fig. 5). Recent progress in the high-resolutionMaastrichtian and Paleo-
cene stable isotope record from marine deposits reveals short-term
global climate changes (Abramovich et al., 2010; Westerhold et al.,
2011), for spikes of CO2 input into the atmosphere less than occurred
near the K–T boundary.

Sea level rise across the K–T boundary is known from sedimentary
correlation of boreholes globally (Adatte et al., 2002; Miller et al.,
2005a; Kominz, et al., 2008; Miller et al., 2011). Estimates of sea level
fluctuation are less than 50 m (Haq et al., 1987; Miller et al., 2003; Van
Sickel et al., 2004; Miller et al., 2005a,b; Kominz et al., 2008; Cramer et
al., 2009; Miller et al., 2011). Furthermore, global seawater acidification
and decreased CaCO3 burial fluxes were observed at the K–T boundary
due to the huge amount of CO2-liberation induced by the Deccan volca-
nism and Chicxulub impact (Robinson et al., 2009; Premović, 2011) and
impact generated nitric and sulfuric acid (Retallack, 1996).

7. Conclusions

Calcareous paleosols have been discovered in a scientific drill core
from the Songliao Basin, northeast China. Well developed pedogenic
carbonates were collected from the scientific drill core (SK-1 (N)).
Here, we measured δ18O and δ13C values of these paleosol carbonates
to estimate Cretaceous atmospheric pCO2 levels using Cerling's (1991)
model, as refined by Retallack (2009b).

Together with previous data on estimates of atmospheric pCO2 from
67.8 Ma and 63.1 Ma,we found one large and several small pCO2 spikes
when CO2 concentration rose from less than 300 ppmv between 68 Ma
and 67 Ma to ~840 ppmv between 66.5 Ma and 65.5 Ma, then dropped
and rose to ~550 ppmv between 64.7 Ma and 64.2 Ma.

Inconsistencies between various estimates of atmospheric CO2 using
the paleosol barometer can be largely ascribed to varied assumptions of
different applications of the paleosol barometer and to differing tempo-
ral resolution of different paleosol sequences. Higher high-resolution re-
cords from pedogenic carbonates may provide insight into short-term
spikes of paleo-atmospheric CO2, as is demonstrated here to accompany
mass extinction at the K–T boundary.

Rising pCO2 after 66.5 Ma is consistent with the onset of main Dec-
can Trap eruptions, and atmospheric pCO2 peaked within 66–65.5 Ma
as a result of large eruption of the Deccan Traps in combination of
masses of CO2 released into the atmosphere produced from vaporized
carbonates due to Chicxulub impact. The small CO2 spikes between
64.7 Ma and 64.2 Ma derived from the CO2-liberation from another
phase of the Deccan Traps. Global warming and sea level rise was also
associated with these CO2 spikes.
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