NEUROBIOLOGY EQUATIONS

1. Membrane potential (V_m)

$$ V_m = V_{in} - V_{out} $$

where V_m is the membrane potential, V_{in} is the potential on the inside of the cell, and V_{out} is the potential on the outside of the cell.

2. Ohm’s Law (and derivations)

$$ V = IR $$

where V is voltage (measured in volts), I is current (measured in amperes or amps), and R is resistance (measured in ohms).

Because conductance is the inverse of resistance (R), Ohm’s law can be rewritten as:

$$ V = I/g $$

where g is conductance (measured in mhos or Siemens).

The most frequently used derivation of Ohm’s Law in neurobiology rearranges the terms to measure current with respect to conductance and voltage:

$$ I_x = g_x (V_m - E_x) $$

Where I_x is the current flow for ion X, g_x is the conductance for ion X, V_m is membrane potential, E_x is the Nernst or Equilibrium Potential for ion X, and $V_m - E_x$ is the driving force for ion X.

3. Nernst Equation (also known as the Nernst Potential or the Equilibrium Potential)

$$ E_x = \frac{RT}{zF} \ln \frac{[X]_{out}}{[X]_{in}} $$

where E_x is the equilibrium potential for ion X, R is the gas constant, T is temperature (degrees Kelvin), z is the valence of ion X, and $[X]_{out}$ and $[X]_{in}$ are the concentrations of ion X outside and inside the cell, respectively.
Since \(RT/F \) is 25 mV at 25°C (room temperature), and the constant for converting from natural logarithm to base 10 logarithm is 2.3, the Nernst equation can be written as:

\[
E_x = \frac{58 \text{ mV}}{z} \log \frac{[X]_{\text{out}}}{[X]_{\text{in}}}
\]

4. Goldman Equation (for the resting membrane potential)

\[
V_m = \frac{58 \text{ mV}}{z} \log \frac{P_K [K]_{\text{out}} + P_{Na} [Na]_{\text{out}} + P_{Cl} [Cl]_{\text{in}}}{P_K [K]_{\text{in}} + P_{Na} [Na]_{\text{in}} + P_{Cl} [Cl]_{\text{out}}}
\]

where \(P_K, P_{Na} \) and \(P_{Cl} \) = permeabilities for \(K^+ \), \(Na^+ \) and \(Cl^- \) ions, respectively.

5. Capacitance

\[Q = CV \]

where \(Q \) is charge in coulombs, \(C \) is capacitance in farads, and \(V \) is voltage in volts.

Because current (I) is the flow of charge per unit time, then current flow across a capacitor can be determined by the derivative of the above equation:

\[I = \frac{dQ}{dt} = C \frac{dV}{dt} \]

6. Time constant (tau \(\tau \); the time required for the membrane potential to rise to 63% of its steady state value)

The time constant is obtained from the equation that describes the rising phase of the change in membrane potential over time:

\[
\frac{dV_m}{dt} = I_m R_m \left(1 - e^{-t/\tau} \right)
\]

where \(\frac{dV_m}{dt} \) is the rate of change in membrane potential \((V_m) \) over time, \(I_m \) is membrane current, \(R_m \) is membrane resistance, \(t \) is time, and \(\tau \) is the time constant. \(\tau \) is further defined as:

\[\tau = R_m C_m \]

where \(R_m \) is membrane resistance and \(C_m \) is membrane capacitance.
7. **Length constant (lambda, \(\lambda \); the distance along the membrane for membrane potential to decay to 37\% (1/e) of its original value)**

The length constant is obtained from the equation that describes the decay in the amplitude of the membrane potential over distance to a current injection at point 0:

\[
V_{m_x} = V_{m_0} e^{-x/\lambda}
\]

where \(V_{m_x} \) is the membrane potential at distance \(x \), \(V_{m_0} \) is the membrane potential at the site of current injection (\(x = 0 \)), \(x \) is distance from the site of current injection, and \(\lambda \) is the length constant. \(\lambda \) is further defined as:

\[
\lambda = \sqrt{R_m/R_i}
\]

Where \(R_m \) is membrane resistance and \(R_i \) is internal or cytoplasmic resistance.